MMB202: MICROBIOLOGY AND	INDUSTRIAL APPLICATIONS
Teaching Scheme Lectures: 4 hrs/Week	Examination Scheme Class Test - 12Marks
Credits: 4	Teachers Assessment - 6Marks Attendance – 12 Marks End Semester Exam – 70 marks

Prerequisite: - Biochemistry, Molecular Biology, Genetic Engineering.

Course Objectives: The objectives of this course are to introduce the students to the field of microbiology with special emphasis on microbial diversity, morphology, physiology and nutrition; methods for control of microbes and host-microbe interactions.

Detailed syllabus

Unit I

Microbial Diversity & Systematics Classical and modern methods and concepts; Domain and Kingdom concepts in classification of microorganisms; Criteria for classification; Classification of Bacteria according to Bergey's manual; Molecular methods such as Denaturing Gradient Gel Electrophoresis (DGGE), Temperature Gradient Gel Electrophoresis (TGGE), Amplified rDNA Restriction Analysis and Terminal Restriction Fragment Length Polymorphism (T-RFLP) in assessing microbial diversity; 16S rDNA sequencing and Ribosomal Database Project.

Unit II

Microbial Growth & Physiology Ultrastructure of Archaea (Methanococcus); Eubacteria (E.coli); Unicellular Eukaryotes (Yeast) and viruses (Bacterial, Plant, Animal and Tumor viruses); Microbial growth: Batch, fed-batch, continuous kinetics, synchronous growth, yield constants, methods of growth estimation, stringent response, death of a bacterial cell. Microbial physiology: Physiological adoption and life style of Prokaryotes; Unicellular Eukaryotes and the Extremophiles (with example from each group)

Unit III

Microbial Interactions and Infection Host-Pathogen interactions; Microbes infecting humans, veterinary animals and plants; Pathogenicity islands and their role in bacterial virulence

Unit IV

Microbes and Environment Role of microorganisms in natural system and artificial system; Influence of Microbes on the Earth's Environment and Inhabitants; Ecological impacts of microbes; Symbiosis (Nitrogen fixation and ruminant symbiosis); Microbes and Nutrient cycles; Microbial communication system; Quorum sensing; Microbial fuel cells; Prebiotics and Probiotics; Vaccines

Unit V

Industrial Applications Basic principles in bioprocess technology; Media Formulation; Sterilization; Thermal death kinetics; Batch and continuous sterilization systems; Primary and secondary metabolites; Extracellular enzymes; Biotechnologically important intracellular products; exopolymers; Bioprocess control and monitoring variables such as temperature, agitation, pressure, pH Microbial processesproduction, optimization, screening, strain improvement, factors affecting down stream processing and recovery; Representative examples of ethanol, organic acids, antibiotics etc. Enzyme Technologyproduction, recovery, stability and formulation of bacterial and fungal enzymes-amylase, protease, penicillin acylase. glucose isomerase; Immobilised Enzyme and Cell based biotransformationssteroids, antibiotics, alkaloids, enzyme/cell electrodes.

Department of Biotechnology, Invertis University, Bareilly Department of Biotechnology, Invertis University, Bareilly Invertis University, Bareilly (U.F.

strat rersity Invertis Bareilly Page 21