CBCS Course Curriculum (Effective from Session 2021-22) [Bachelor of Sclence (B.Sc. Forensic Science)]

13.Sc. Forensic Science: Semester-VI DST604: Physics - VI	
teaching totheme	Examination Scheme
I chincos 1 hrs/Week	Class Test - 12 Marks
Iuformiai I lir/Wech.	Teachers Assessment - 6 Marks
Cicdins 1	Attendance - 12 Marks
	End Semester Exam - 70 marks

ount one oulconies:
'he student at the completion of the course will be able to:

- Stody the diff and diffusion of charge carriers in a semiconductor.
- Hoderstand the Two-Port medel of a transistor.
- Study the working, properties and uses of FETs.
- Comprehend the design and operations of SCRs and UJTs.
- Understand various number systems and binary codes.
- I amiliarze with bimary arithmetic.
- Study the working and properties of various logic gates.
- Compreliend the design of combinational and sequential circuits.

Unit I Semiconductor Junction

- Lixpressions for Femi energy, Electron density in conduction band, Hole density in valence band, Drift of charge carriers (mobility \& conductivity), Diffusion of charge carries and Life time of charge carries in a semiconductor. Work function in metals and semiconductors. Expressions for Barrier potential, Barticr width and Junction capacitance (diffusion \& transition) for depletion layer in a PN junction. Expressions for Current (diode equation) and Dynamic resistance for PN junction.
Unit II - Transistor Modeling
- Transistor as Two-Port Network. Notation for dc $\&$ ac components of voltage $\&$ current. Quantitative discussion of $7, Y \&$ h parameters and their equivalent two-generator model circuits. h-parameters for CIB, CI: \& CC configurations. Analysis of transistor amplifier using the hybrid equivalent model and estimation of Input Impedance, Output Impedance and Gain (current, voltage \& power).
Unit III - Number System
- Number S'ystems; Binary, Octal, Decimal \& Hexadecimal number systems and their inter conversion.
- Binary Codes: BCD, Excess-3 (XS3), Parity, Gray, ASCII \& EBCDIC Codes and their advantages \& disadvantages. Data representation.

Unit IV Logic Gates

- Truth Table, Symbolic Representation and Properties of OR, AND, NOT, NOR, NAND, EX-OR \& EX-NOR Gates. Implementation of OR, AND \& NOT gates (realization using diodes \& transistor) De Morgan's theorems. NOR \& NAND gates as Universal Gates. Application of EX-OR \& EXNOR gates as pairty checker. Boolean Algebra. Karnaugh Map.
Unit V Combinational \& Sequential Circuits
- Combinational Circuits: Half Adder, Full Adder, Parallel Adder, Half Substractor, Full Substractor. Data Processing Circuits: Multiplexer, Demultiplexer, Decoders \& Encoders. Sequential Circuits: SR, JK \& D Flip-Flops, Shift Registef (Irapsfer operation of Flip-Flops), and Asynchronous \& Synchronous counters.

