

CBCS Course Curriculum (Effective from Session 2024-22) [Bachelor of Science (B.Sc. Forensic Science)]

	B.Sc. Forensic Science: Se FST596: Computer	mester-V Science - V	
Teaching Scher Lectures: 3 hrs/W	ne	F.z.smination Solution	
Tutorials: 1 hr/W	eek	Class Test -17 Marks	
Credits: 4	and The Property and	Allenderse Martin	
	etal Product	End Semester Exert - 10 months	

course outcomes:

- Understand that various problem solving categories exist such as; iterative technique, divide and compare, dynamic programming, greedy algorithms, and understand various searching and sorting algorithms
- Employ a deep knowledge of various data structures when constructing a program.
- Design and construct simple object-oriented software with an appreciation for data abavarios and information hiding.
- Effectively use software development tools including libraries, compilers, consisters, hukers and debuggers in write and troubleshoot programs.

Unit I - Analysis of Algorithm and Data Structures

- Introduction: Basic Design and Analysis techniques of Algorithms, time and space complexity Correctness of Algorithm, Algorithm Design Techniques: Iterative techniques, Divide and Canoner, Dynamic Programming, Greedy Algorithms.
- Sorting Techniques: Elementary sorting techniques-Bubble Sort, Insertion Sort, Merge Sort, Advanced Sorting techniques-Heap Sort, Quick Sort, Sorting in Linear Time- Bucket Sort, Radix Sort and Count Sort

Unit II - Searching Techniques and Complexity Analysis

- Linear and Binary search, Medians & Order Statistics.
 - Arrays: Single and Multi-dimensional Arrays, Sparse Matrices;

Unit III - Stacks and Queues

• Implementing stack using array and linked list, Prefix, Infix and Postfix expressions, Unlity and conversion of these expressions from one to another; Array and Linked representation of Queue, Dequeue, Priority Queues

Unit IV - Linked Lists

- · Singly, Doubly and Circular Lists, representation of Stack and Queue as Linked Lists.
- Recursion: Developing Recursive Definition of Simple Problems and their implementation; Advantages and Limitations of Recursion;

Unit V – Trees

 Introduction to Tree as a data structure; Binary Trees, Binary Search Tree, (Creation, and Traversals of Binary Search Trees)

Department of Biotechnology Invertis University, Sureilly (U.P.) Dean Faculty of Science Invertis University, Batcili