BPE801

Advanced Electric Drives

3L:0T:0P

3 credits

Course Outcomes:

At the end of this course, students will demonstrate the ability to

- Understand the operation of power electronic converters and their control strategies.
- Understand the vector control strategies for ac motor drives
- Understand the implementation of the control strategies using digital signal processors.

Module 1: Power Converters for AC drives (10 hours)

PWM control of inverter, selected harmonic elimination, space vector modulation, current control of VSI, three level inverter, Different topologies, SVM for 3 level inverter, Diode rectifier with boost chopper, PWM converter as line side rectifier, current fed inverters with self-commutated devices. Control of CSI, H bridge as a 4-Q drive.

Invertis University, Bareilly

Effective from session 2020-21

Invertis University

Bareilly-243123, UP

Module 2: Induction motor drives (10 hours)

Different transformations and reference frame theory, modeling of induction machines, voltage fed inverter control-v/f control, vector control, direct torque and flux control(DTC).

Module 3: Synchronous motor drives (6 hours)

Modeling of synchronous machines, open loop v/f control, vector control, direct torque control, CSI fed synchronous motor drives.

Module 4: Permanent magnet motor drives (6 hours)

Introduction to various PM motors, BLDC and PMSM drive configuration, comparison, block diagrams, Speed and torque control in BLDC and PMSM.

Module 5: Switched reluctance motor drives (6 hours)

Evolution of switched reluctance motors, various topologies for SRM drives, comparison, Closed loop speed and torque control of SRM.

Module 6: DSP based motion control (6 hours)

Use of DSPs in motion control, various DSPs available, realization of some basic blocks in DSP for implementation of DSP based motion control.

Text / References:

- 1. B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education, Asia, 2003.
- P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of Electric Machinery and Drive Systems", John Wiley & Sons, 2013.
- H. A. Taliyat and S. G. Campbell, "DSP based Electromechanical Motion Control", CRC press, 2003.
- 4. R. Krishnan, "Permanent Magnet Synchronous and Brushless DC motor Drives", CRC Press, 2009.

Registral Invertis University Bareilly

Invertis University, Bareilly

Effective from session 2020-21

Faculty of Engineering & Technology Invertis University Barrilly-243123, UP

2