7. Digital Storage Oscilloscope.

Experiments

1. Measurement of a batch of resistors and estimating statistical parameters.
2. Measurement of L using a bridge technique as well as LCR meter.
3. Measurement of C using a bridge technique as well as LCR meter.
4. Measurement of Low Resistance using Kelvin's double bridge.
5. Measurement of High resistance and Insulation resistance using Megger.
6. Usage of DSO for steady state periodic waveforms produced by a function generator. Selection of trigger source and trigger level, selection of timescale and voltage scale. Bandwidth of measurement and sampling rate.
7. Download of one-cycle data of a periodic waveform from a DSO and use values to compute the RMS values using a C program.
8. Usage of DSO to capture transients like a step change in R-L-C circuit.
9. Current Measurement using Shunt, CT, and Hall Sensor. usingelectronic circuits.
10. Chooseappropriate components, software and hardware platforms.
11. Design a Printed Circuit Board, getit made and populate/solder itwith components. Invertis Universin, Bareilly
conditioning circuits; Introduction to electronic instrumentation and PC based data acquisition; Electronic system design, Analog system design, Interfacing of analog and digital systems, Embedded systems, Electronic system design employing microcontrollers, COLDs, and FPGAs, PCB design and layout; System assembly considerations. Group projects involving electronic hardware (Analog, Digital, mixed signal) leading to implementation of an application.

Text/Reference Books

1. A. S. Sedra and K. C. Smith, "Microelectronic circuits", Oxford University Press, 2007.
2. P. Horowitz and W. Hill, "The Art of Electronics", Cambridge University Press, 1997.
3. H.W.Ott, "Noise Reduction Techniques in Electronic Systems", Wiley, 1989.
4. W.C. Bosshart, "Printed Circuit Boards: Design and Technology", Tata McGraw Hill, 1983.
5. G.L. Ginsberg, "Printed Circuit Design", McGraw Hill, 1991.

Invertis Universin:
Bareilly

