BCA204: Object oriented Programming C++	
Teaching Scheme	Examination Scheme
Lectures: 3 hrs/Week	Unit Test -12Marks
Tutorials: 1 hr/Week	Teachers Assessment - 6Marks
	Attendance – 12 Marks
Credits: 4	End Semester Exam – 70 marks

Prerequisite: - Basics of C language

Course Objectives:

- 1. Understand fundamentals of object-oriented programming in C++.
- 2. Have the ability to write a computer program to solve specified problems.
- 3. Be able to explain the difference between object oriented programming and procedural programming.
- 4. Be able to program using more advanced C++ features
- 5. Be able to build C++ classes using appropriate encapsulation and design principles.
- 6. Improve problem solving skills

Detailed Syllabus

UNIT I

Introduction to OOP: Basic concepts of OOPs, Advantages of OOP, Need of object-oriented programming, characteristics of object-oriented languages, Object oriented approach vs procedure-oriented approach, Object, Classes, Encapsulation, Data Abstraction, Inheritance, Polymorphism, Dynamic binding, Message Passing, Application of OOPs.

UNIT II

C++ **Programming Basics:** Language Fundamentals-Character set, Keywords, Identifiers, Variables, Constant, Data Types, and Comments. Operators in C++, Operator Precedence - Types of operators, Precedence and Associativity. Type Conversion, Statement and types of statements. Difference between C++ and C. Basic program construction, input/output using cin/count; manipulators

UNIT III

Control Statements: Conditional expressions, loop statements, breaking and control statements. Arrays-Notation, Declaration, Initialization, Processing.

UNIT IV

Functions: Simple functions, Function Prototyping, Call by reference, Return by Reference, Default Arguments, Constant Arguments, Inline Function, functions overloading, static function.

UNIT V

Classes and Objects: Introduction, structure and classes, declaration of class, defining the object of a class, accessing a member of class, arrays of class objects, Constructors, Destructors, friend function, Dynamic memory allocation. Constructors and Destructors, objects as function arguments, static class member.

UNIT VI

Inheritance: Introduction, defining derived classes, overriding member functions, Single Inheritance, multilevel Inheritance, multiple Inheritance, Hierarchical Inheritance, Virtual Base Class. Operator Overloading: Overloading Unary & Binary operators, Data conversion.

Text and Reference Books

- 1. Object Oriented Programming with C++, E. Balaguruswamy, 4th Edition.
- 2. Object Oriented Programming in C++, Robert Lafore, Sams, Dec., 2001.
- 3. C++ Programming, D. Ravichandran, TMH, 2nd Edition, Dec. 2002.
- 4. Mastering C++, Venugopal, TMH, September, 1997.
- 5. Object Oriented Programming using C++ , Joyce Farrell, Cengage Learning India Pvt. Ltd., 6th Edition.

Course Outcomes:

After completing the course, students will be able to:

- 1. Describe the procedural and object-oriented paradigm with concepts of streams, classes, functions, data and objects.
- 2. Understand dynamic memory management techniques using pointers, constructors, destructors, etc.
- 3. Describe the concept of function overloading, operator overloading, virtual functions and polymorphism.
- 4. Implement abstraction level programming using inheritance
- 5. Design modular programs.
- 6. Apply good programming style and understand the impact of style on developing and maintaining programs.
- 7. Design object oriented solutions for small systems involving multiple objects.