7.1. 117. Advanced Soft Computing			
MCA 417: Adva			
	Examination Scl	leme	
Teaching Scheme	Class Test -12Ma	irks	
Lectures: 3 hrs/Week	Teachers Assess	hent - Olviarko	
Tutorials: 1 hr/Week	Attendance – 12	Marks 70 marks	
	End Semester Ex	am – 70 marks	
Credits: 4			
P Algorithm, Programm	ning skills.		
Pre-requisites. Mattenduce, 142		t Cast computin	<i>v</i> :
Course Objectives:			tinσ
3. Explain basic concepts, principles, mg	mputing problem to	be solved using soft compute	ing.
4. Analyze computing requirements of a co			
algorithm.			
Detailed Syllabus :			
Detailed Symmetry			
Unit-1	d Soft Computing.	Fuzzy Sets – Basic Definition	and
Fuzzy Set Theory: Introduction to Neuro-Fuzzy and Soft Computing, Fuzzy and Parameterization, Fuz			uzzy
Terminology, Set-theoretic Operations, Member Function Function Rules, Fuzzy Reasoning - Fuzz			uzzy
Rules – Extension Principle and Fuzzy Relations, Tuzzy Models, Tsukamoto Fuzzy Models, Inp			nput
Inference Systems, Mamdani Fuzzy Models, Suge	,110 T (22)		
Space Partitioning and Fuzzy Modening.			
Unit-2		The Method of Steepest De	scent,
Optimization: Derivative-based Optimization, December Privative-free Optimization.			
Classical Newton's Method, Step Size Determinant			
Unit-3	a. 1 / 1 A	ing Gradient Free Ontimiz	ation.
Genetic Algorithm: Simple Genetic Algorithms,	Simulated Annea	andom Search Doy	vnhill
Crossover and mutation, Genetic algorithms in s	search and optimit	Zation, Kandom Search, 20	
Simplex Search.			
Unit-4	D 1. Duemogration	and Feed Forward Net	vorks.
Neural Networks: Introduction, Architecture, Back Propagation and recul rothing			trons.
Supervised Learning Neural Networks, Perceptrons, Adnine, Backpropagation viulation erection			arning
Radical Basis Function Networks, Unsupervised	Learning Neural	ntization Hebbian Learning	
Networks, Kohonen Self-Organizing Networks, Le	arning vector Qua	Intization, Tieootan Dearning.	
Unit-5	Informa System	as Architecture Hybrid Le	arning
Neuro Fuzzy Modeling: Adaptive Neuro-Fuzzy	ANEIS and RBEN	Coactive Neuro Fuzzy Mo	deling.
Algorithm, Learning Methods that Cross-leftilize	rks Neuro Euzzy	Spectrum	
Framework Neuron Functions for Adaptive Netwo	iks, iteuio i uzzy		
Unit-6	inematics Problem	ms Automobile Fuel Eff	ciency
Applications: Pattern Recognitions, inverse R	e Alignment and	Drug Design, Robotics and S	ensors.
Prediction, Image Processing, Biological Sequence	lysis Natural Land	mage Processing	
Information Retrieval Systems, Share Warker And	1) bib, 1 (attal at Daile		
1 Neuro-Euzzy and Soft Computing" LS	S.R.Jang, C.T.Sun	and E.Mizutani, PHI - I	earson
1. Read-1 azzy and bott comparing , or			
Education, 2004.	". Timethy I Date	MaGroup Hill 1007	
2. Fuzzy Logic with Engineering Applications, Thilothy J.Ross, McGraw-Fill, 1997.			1.1°
3. Genetic Algorithms: Search, Optimization and Machine Learnin		rning", Davis E. Goldberg, A	aaison
Wesley, N.Y., 1989.			
A			
Vaul			1
Wead	Miero job		
Computer Applications	dishi Univer	DearrAc	demics
recurry of Computer Applications	Verus and	Faculty of Comp	iter Appli
mivertis University. Baroliny (UP)	C.M.	Invertis Universi	y, Bareil

Faculty of Computer Application

Course Outcomes: After completing the course, students will be able to:

- Illustrate Fuzzy logic and its applications.
- Artificial neural networks and its applications.
- Solving single-objective optimization problems using GAs. 3.
- Solving multi-objective optimization problems using Evolutionary algorithms (MOEAs).
- Applications of Soft computing to solve problems in varieties of application domains.
- Fuzzy logic and its applications.