BCA204: Object o	riented Programming C++
Teaching Scheme	Examination Scheme
Lectures: 3 hrs/Week	Unit Test -12Marks
Tutorials: 1 hr/Week	Teachers Assessment - 6Marks
	Attendance – 12 Marks
Credits: 4	End Semester Exam – 70 marks
Prerequisite: - Basics of C language	
Course Objectives:	
1. Understand fundamentals of object-orie	nted programming in C++.
2. Have the ability to write a computer pro	program to solve specified problems.
3. Be able to explain the difference betwee	en object oriented programming and procedural
programming.	
4. Be able to program using more advance	ed C++ features
5. Be able to build C++ classes using appr	copriate encapsulation and design principles.
6. Improve problem solving skills	
etailed Syllabus	
JNIT I	OOPs Advantages of OOP. Need of object-orient
Introduction to OOP: Basic concepts of	ted languages. Object briented approach vs procedu
programming, characteristics of object-offen	ulation Data Abstraction. Inheritance, Polymorphis
briented approach, Object, Classes, Elicaps	on of OOPs
Dynamic binding, Message Passing, Application	511 01 0 01 5.
And	
Amean Applications	
Department of Computer Approv	HEAD MERCENICS
Faculty of Computer Application	C
Faculty Strainversity, Bareling (Strain	ictral warshing Haculty of Computer Applet
Real and Computer Applications	nvertis University page 16
Bachelor of Computer Applications	
2	810

UNIT II C++ Program in D in Language Fundamental Cl		
Constant, Data Types, and Comments. Operators in C++, Operator Precedence and Associativity. Type Conversion, Statement and type C++ and C. Basic program construction, input/output using cin/coun	, Keywords, Identifiers, Var Precedence - Types of ope s of statements. Difference be t; manipulators	ables, rators, tween
UNIT III Control Statements: Conditional expressions, loop statements, Arrays-Notation, Declaration, Initialization, Processing.	breaking and control stat	ements.

UNIT IV

Functions: Simple functions, Function Prototyping, Call by reference, Return by Reference, Default Arguments, Constant Arguments, Inline Function, functions overloading, static function.

UNIT V

Classes and Objects: Introduction, structure and classes, declaration of class, defining the object of a class, accessing a member of class, arrays of class objects, Constructors, Destructors, friend function Dynamic memory allocation. Constructors and Destructors, objects as function arguments, statid class member.

UNIT VI

Inheritance: Introduction, defining derived classes, overriding member functions, Single Inheritance multilevel Inheritance, multiple Inheritance, Hierarchical Inheritance, Virtual Base Class. Operato Overloading: Overloading Unary & Binary operators, Data conversion.

Text and Reference Books

- 1. Object Oriented Programming with C++, E. Balaguruswamy, 4th Edition.
- 2. Object Oriented Programming in C++, Robert Lafore, Sams, Dec., 2001.
- 3. C++ Programming, D. Ravichandran, TMH, 2nd Edition, Dec. 2002.
- 4. Mastering C++, Venugopal, TMH, September, 1997.
- 5. Object Oriented Programming using C++, Joyce Farrell, Cengage Learning India Pvt. Ltd., Edition.

Course Outcomes:

After completing the course, students will be able to:

- 1. Describe the procedural and object-oriented paradigm with concepts of streams, classes, functions data and objects.
- 2. Understand dynamic memory management techniques using pointers, constructors, destructors, et
- 3. Describe the concept of function overloading, operator overloading, virtual functions and polymorphism.
- Implement abstraction level programming using inheritance 4.
- 5. Design modular programs.
- 6. Apply good programming style and understand the impact of style on developing and maintainin programs.
- 7. Design object oriented solutions for small systems involving multiple objects.

Department of Computer Applications Faculty of Computer Applications Invertis University, Bareily (UP)

Academics computer Applicat