MSc (Chemistry)



# Scheme of Instruction & Syllabi

For

# **Master of Science**

# In

# Chemistry

Two Years CBCS M.Sc. Course in Chemistry (Academic Session: 2020-21)

# **Second Year**

# **Department of Applied Sciences & Humanities**

# **INVERTIS UNIVERSITY**

W/e/f 2020-21

#### MSc (Chemistry)



#### **Programme Outcomes (POs)**

- Students will have a firm foundation in the fundamentals and application of current chemical and scientific PO1: theories including those in Analytical, Inorganic, Organic and Physical Chemistries.
- Students will be able to design and carry out scientific experiments as well as accurately record and analyze the PO2: results of such experiments.
- Students will be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific PO3: problems.
- Students will be able to clearly communicate the results of scientific work in oral, written and electronic formats PO4: to both scientists and the public at large.
- Students will be able to explore new areas of research in both chemistry and allied fields of science and tech-PO5: nology.
- Students will appreciate the central role of chemistry in our society and use this as a basis for ethical behavior PO6: in issues facing chemists including an understanding of safe handling of chemicals, environmental issues and key issues facing our society in energy, health and medicine.
- Students will be able to function as a member of an interdisciplinary problem solving team. PO7:
- The graduate has specific skills in planning and conducting advanced chemical experiments and applying struc-PO8: tural-chemical characterisation techniques.
- Are able to use modern instrumentation and classical techniques, to design experiments, and to properly record PO9: the results of their experiment.
- PO10: Are able to use modern library searching and retrieval methods to obtain information about a topic, chemical, chemical technique, or an issue relating to chemistry.
- PO11: Students should be able to communicate scientific results in writing and in oral presentation.
- PO12: Students should become proficient in their specialized area of chemistry and acquire the basic tools needed to carry out independent chemical research. 18 Stal a 200 to to have

Head

w/e/f 2020-2

Faculty of Science Invertis University, Barcilly (U.P.)

CHANC

Dean

2

MSc (Chemistry)



#### **Programme Educational Objectives (PEO)**

- PEO-1: The Masters in Chemistry will extend your depth and breadth of knowledge in all branches of chemistry, suitable for a professional chemist capable of conducting research.
- PEO-2: To carryout research in the trust areas of chemistry. Will be able to communicate effectively the scientific information and research results in written and oral formats, to both professional scientists and to the public.
- PEO-3: To motivate critical thinking and analytical skills to solve complex chemical problems and the Ability to handle problems of practical relevance to society while complying with economical, environmental, ethical, and safety factors.
- PEO-4: To practice chemistry by performance of experiments in the laboratory classes. To perform accurate quantitative measurements with an understanding of the theory and use of contemporary chemical instrumentation, interpret experimental results, perform calculations on these results and draw reasonable, accurate conclusions.

K102E

of Applied Science

Dean CHANCELLOR INVERTIS UNIVERSI Faculty of Science BAREILL Invertis University, Bareilly (U.P.) Head



Alogen And Hoo Justice



#### M.Sc. CHEMISTRY (SECOND YEAR)

#### **SEMESTER -III**

|     | <b>Course Code</b> | Subject                  |    |      |     | Eval |     |       |        |
|-----|--------------------|--------------------------|----|------|-----|------|-----|-------|--------|
| S.N |                    |                          | L  | T    | Р   | MSM  | ESM | Total | Credit |
|     |                    |                          |    |      | ji. |      |     | Marks |        |
| 1   | MCH301             | Inorganic Chemistry-III  | 3  | 1    | -   | 30   | 70  | 100   | 4      |
| 2   | MCH302             | Organic Chemistry-III    | 3  | 1    | -   | 30   | 70  | 100   | 4      |
| 3   | MCH303             | Physical Chemistry-III   | 3  | 1    | -   | 30   | 70  | 100   | 4      |
| 4   | MCH304             | Analytical Chemistry-III | 3  | 1    | -   | 30   | 70  | 100   | 4      |
| 5   | MCH3011*           | Advanced Inorganic       | 3  | 1    | -   | 30   | 70  | 100   | 4      |
|     | *                  | Chemistry                |    |      |     |      |     |       |        |
| 6   | MCH3021*           | Advanced Organic         | 3  | 1    | -   | 30   | 70  | 100   | 4      |
|     |                    | Chemistry                |    |      | -   |      |     | 100   |        |
| 7   | MCH3031*           | Advanced Physical        | 3  | 1    | -   | 30   | 70  | 100   | 4      |
|     |                    | Chemistry                |    |      |     |      |     | 100   |        |
| 8   | MCH3041*           | Advanced Analytical      | 3  | 1    | -   | 30   | 70  | 100   | 4      |
|     |                    | Chemistry                |    |      |     |      |     |       |        |
| 9   | MCH351*            | Inorganic Chemistry      | -  | -    | 3   | 20   | 30  | 50    | 2      |
|     |                    | Practical-III            |    |      |     | -    |     |       |        |
| 10  | MCH352*            | Organic Chemistry        | -  | -    | 3   | 20   | 30  | 50    | 2      |
|     |                    | Practical-III            |    |      |     |      |     |       |        |
| 11  | MCH353*            | Physical Chemistry       | -  | -    | 3   | 20   | 30  | 50    | 2      |
|     |                    | Practical-III            |    |      |     |      |     |       |        |
| 12  | MCH354*            | Analytical Chemistry     | -  | -    | 3   | 20   | 30  | 50    | 2      |
|     |                    | Practical-I              |    |      | 1   |      |     |       |        |
| 13  | MCH355**           | Field                    | -  | -    | 2   | 30   | 70  | 100   | 2      |
|     |                    | Project/Internship       |    | 1000 |     |      |     |       |        |
|     |                    | Total                    | 15 | 5    | 3   | 200  | 450 | 650   | 24     |

\*Student has to choose only one (theory + lab) in the specialization.

\*\*Student will carry out Field Project/Internship during first year session break of the program

5/10/20

Head Department of Applied Science Invertis University, Bareilly (U.P.)

Kuldeep Dr. D. ARUMU GAM 15/10/20 Dr. Kuldeep chawban

w/a/f 2020 21



| (Inorgan | nic group)     |                                             |    |   | E.J |     | ahama |                |        |
|----------|----------------|---------------------------------------------|----|---|-----|-----|-------|----------------|--------|
| S.No.    | Course<br>Code | Subject                                     | L  | Т | P P | MSM | ESM   | Total<br>Marks | Credit |
| 1        | MCH4012        | Spectroscopic Methods                       | 3  | 1 | -   | 30  | 70    | 100            | 4      |
| 2        | MCH4013        | Bioinorganic Chemistry                      | 3  | 1 | -   | 30  | 70    | 100            | 4      |
| 3        | MCH4014        | Analytical Techniques                       | 3  | 1 | -   | 30  | 70    | 100            | 4      |
| 4        | MCH4015        | Nuclear and<br>Radiochemistry               | 3  | 1 | -   | 30  | 70    | 100            | 4      |
| 5        | MCH451         | Inorganic Chemistry<br>Practical-IV         | -  | - | 3   | 20  | 30    | 50             | 2      |
| 6        | MCH452         | Inorganic Chemistry<br>Project & Evaluation | -  | - | 3   | 30  | 70    | 100            | 2      |
|          |                | Total                                       | 12 | 4 | 6   | 170 | 380   | 550            | 20     |

#### SEMESTER IV

| (Organi | c group)     |                                           | A Sold in |            |            |                                                                                                                 |     | 1       |        |
|---------|--------------|-------------------------------------------|-----------|------------|------------|-----------------------------------------------------------------------------------------------------------------|-----|---------|--------|
| (0-8    | Course Code  | Subject                                   |           |            |            |                                                                                                                 |     |         |        |
| S.No.   | Course cours |                                           | L         | <b>T</b> . | P          | MSM                                                                                                             | ESM | Total   | Credit |
|         |              | - Sinado                                  | - 1       |            | the second |                                                                                                                 |     | IVIALKS |        |
| 1       | MCH4022      | Organic Synthesis                         | 3         | 1          |            | 30                                                                                                              | 70  | 100     | 4      |
| 2       | MCH4023      | Biomolecules                              | 3         | 1          |            | 30                                                                                                              | 70  | - 100   | 4      |
| 3       | MCH4024      | Mechanisms of Organic                     | 3         | 1          | -          | 30                                                                                                              | 70  | 100     | 4      |
|         |              | Reactions                                 |           | - da -     |            | a service a |     | -       |        |
| 4       | MCH4025      | Medicinal Chemistry                       | 3         | 1          | - 1        | 30                                                                                                              | 70  | 100     | 4      |
| 5       | MCH453       | Organic Chemistry<br>Practical-IV         |           | -          | 3          | 20                                                                                                              | 30  | - 50    | 2      |
| 6       | MCH454       | Organic Chemistry<br>Project & Evaluation |           | -          | 3          | 30                                                                                                              | 70  | 100     | 2      |
|         |              | Total                                     | 12        | 4          | 6          | 170                                                                                                             | 380 | 550     | 20     |

Head

Head Department of Applied Science Invertis University, Bareilly (OPP.) Kuldrep chauhan

Dr. D. ARUMUGAM

3/14/2019/00/14/11/10/20



| (Physica | l group)           |                       |       |   |   | E SA    |     | Contraction of |        |
|----------|--------------------|-----------------------|-------|---|---|---------|-----|----------------|--------|
|          | <b>Course Code</b> | Subject               |       |   |   |         |     |                |        |
| S.No.    |                    |                       | L     | T | P | MSM     | ESM | Total<br>Mark  | Credit |
|          |                    |                       | 144   |   |   |         |     | S              | •      |
| 1        | MCH4032            | Advanced              | 3     | 1 | - | 30      | 70  | 100            | 4      |
|          |                    | Electrochemistry      |       |   |   |         |     |                |        |
| 2        | MCH4033            | Photo and Radio       | 3     | 1 | - | 30      | 70  | 100            | 4      |
|          |                    | Chemistry             |       |   |   |         |     |                |        |
| 3        | MCH4034            | Biophysical Chemistry | 3     | 1 | - | 30      | 70  | 100            | 4      |
| 4        | MCH4035            | Crystallography       | 3     | 1 | - | 30      | 70  | 100            | 4      |
| 5        | MCH455             | Physical Chemistry    | -     | - | 3 | 20      | 30  | 50             | 2      |
|          | - men of           | Practical-IV          | Same. |   |   | 1.1.1.1 |     |                |        |
| 6        | MCH456             | Physical Chemistry    |       | - | 3 | 30      | 70  | 100            | 2      |
| 0        | literitie          | Project & Evaluation  |       |   |   |         |     |                |        |
|          |                    | Total                 | 12    | 4 | 6 | 170     | 380 | 550            | 20     |

| (Analy  | tical group)       |                                              | -       |   |   |          |       |                |        |
|---------|--------------------|----------------------------------------------|---------|---|---|----------|-------|----------------|--------|
| e dan a | <b>Course Code</b> | Subject                                      | Subject |   |   | uation S | cheme | -              |        |
| S.No.   |                    |                                              | L       | Τ | Р | MSM      | ESM   | Total<br>Marks | Credit |
| 1       | MCH4042            | Separation Techniques                        | 3       | 1 | - | 30       | 70    | 100            | 4      |
| 2       | MCH4043            | Polarography                                 | 3       | 1 | - | 30       | 70    | 100            | 4      |
| 3       | MCH4044            | Spectroscopic<br>Techniques                  | 3       | 1 | - | 30       | 70    | 100            | 4      |
| 4       | MCH4045            | Micro Analytical<br>Techniques               | 3       | 1 | - | 30       | 70    | 100            | 4      |
| 5       | MCH457             | AnalyticalChemistry<br>Practical-II          | -       | - | 3 | 20       | 30    | 50             | 2      |
| 6       | MCH458             | Analytical Chemistry<br>Project & Evaluation |         | - | 3 | 30       | 70    | 100            | 2      |
|         |                    | Total                                        | 12      | 3 | 6 | 170      | 380   | 550            | 20     |

101

ldeep

chauban

Head

3/1422 ARUMULAM DI. D. ARUMULAM

Dean Reparta choof ApplkQ.Set Faculty of Science Invertis University, Bareilly (U.P.) Dr. Kuldeep



## **SEMESTER-III**

### MCH301: Inorganic Chemistry-III

| Teaching Scheme      | Examination Scheme                                    |
|----------------------|-------------------------------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks                                  |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks<br>Attendance – 12 Marks |
| Credits: 4           | End Semester Exam – 70 marks                          |

**Prerequisite:** Concept of inorganic reaction mechanisms and catalysis and bio-inorganic chemistry.

### **Course Objectives:**

- 1. To know about mechanisms of substitution reactions of tetrahedral.
- 2. To understand the square pyramidal and octahedral complexes.
- 3. To learn the chemical activation.
- 4. To learn the nature of bridge ligands
- 5. To know the. nitrogen fixation.
- 6. To understand the chelating reagents in medicine.

### **Detailed Syllabus**

#### Section-A:

#### **Unit-1: Inorganic Reaction Mechanisms**

Mechanisms of substitution reactions of tetrahedral, square planar, trigonal bipyramidal, square pyramidal and octahedral complexes. Potential energy diagrams, transition states and intermediates, isotope effects, factors affecting the reactivity of square planar complexes, Trans effect and its application to synthesis of complexes. Molecular rearrangement processes: Electron transfer reactions (outer and inner sphere), HOMO and LUMO of oxidant and reluctant, chemical activation. Precursor complex formation and rearrangement, nature of bridge ligands, fission of successor complexes, Two-electron transfers.

#### Section-B

#### Unit-2: Catalysis and Bio-inorganic Chemistry

Transition metal ion catalysts for organic transformations and their application in hydrogenation (using symmetric and chiral organometallic catalysts), isomerization, olefin oxidation, carbonylation and polymerization reactions. Nitrogen fixation. Futuristic aspects of organo transition metal complexes as catalysts and in bio-inorganic chemistry. Role of metal ions in biological chelation therapy, chelating reagents in medicine, recent advences in cancer chemotherapy using chelates.



#### **Text and Reference Books**

#### **Reference Books:**

- Katakis, D. & Gordon, G. Mechanism of Inorganic Reactions John Wiley & Sons: N. Y (1987).
- Langford, H. &.Gray, H. B. Ligand Substitution Processes W. A. Benjamin: N. Y. (1966).
- Tobe, M. & Wadington, F. C. Ed., Inorganic Reaction Mechanisms Thomas Nelson: London (1973).
- Hughes, M. N. The Inorganic Chemisty of Biological Processes, 2nd Ed., Wiley (1981).

### **Course Outcomes:**

| CO1 | Describe the square pyramidal and octahedral complexes.           |
|-----|-------------------------------------------------------------------|
| CO2 | Understand the molecular rearrangement processes.                 |
| CO3 | Explain the HOMO and LUMO of oxidant and reluctant.               |
| CO4 | Develop the fission of successor complexes.                       |
| CO5 | Calculate the role of metal ions in biological chelation therapy. |
| CO6 | Illustrate the symmetric and chiral organometallic catalysts.     |



| MCH302: Organ        | MCH302: Organic Chemistry-III |  |  |  |  |
|----------------------|-------------------------------|--|--|--|--|
| Teaching Scheme      | <b>Examination Scheme</b>     |  |  |  |  |
| Lectures: 3 hrs/Week | Class Test -12 Marks          |  |  |  |  |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks  |  |  |  |  |
|                      | Attendance – 12 Marks         |  |  |  |  |
| Credits: 4           | End Semester Exam – 70 marks  |  |  |  |  |

### ICTT202.

#### **Prerequisite: -**

Concept of photochemistry & pricyclic reactions and chemistry of life processes.

#### **Course Objectives:**

- 1. To know about Jablonskii diagram, energy pooling.
- 2. To understand the photosensitization, quantum yield.
- 3. To learn the: photochemical additions; reactions of 1.3-.1,4- and 1,5-dienes.
- 4. To learn the Norrish type I & II reactions.
- 5. To know the General Orbital Symmetry rules.
- 6. To understand the Correlation diagrams for different systems.

### **Detailed Syllabus**

#### **Unit-1: Photochemistry & Pericyclic Reactions**

Photophysical processes: Jablonskii diagram, energy pooling, exciplexes, excimers, photosensitization, quantum yield, solvent effects. Stern volume plots, delayed fluorescence Stern-volmer plot, delayed fluorescence, etc.

Unit-2: Photochemistry of alkenes: cis-trans isomerization, non-vertical energy transfer: photochemical additions; reactions of 1.3-.1,4- and 1,5-dienes. Dimerizations.

Unit-3: Photochemistry of carbonyl compounds: Norrish type I & II reactions (cyclic and acyclic);  $\alpha$ ,  $\beta$ -unsaturated ketones;  $\beta$ ,  $\gamma$ -unsaturated ketones; cyclohexenones (conjugated); cyclohexadienones(cross-conjugated & conjugated); Paterno—Buchi reactions:

Unit-4: Photochemistry of aromatic compounds: Isomerizations, skeletal isomerizations, Dewar and prismanes in isornerization. Singlet oxygen reactions: Photo Fries rearrangement of ethers and anilides; Barton reaction, Hoffman-Loefller-Freytag reaction.

Unit-5: Pericyclic reactions: Electrocyclic. cycloaddition. sigmatropic and chelotropic reactions; General Orbital Symmetry rules. Frontier Orbital approach, PMO approach, Correlation diagrams for different systems. General pericyclic selection rule and its applications, 1,3-dipolar additions, Ene reaction. **Unit-6: Chemistry of Life Processes** 

Introduction to metabolic processes: Catabolism and anabolism, ATPcurrency of biological energy, energy rich and energy poor phosphates. Carbohydrate metabolism: Glycolysis, fate of pyruvate under anaerobic con-

ditions, citric acid cycle.

Unit-7: Fatly acid metabolism: Even chain and odd chain (saturated and unsaturated) fatty acids, fatty acids anabolism calorific values of food.



Protein metabolism and disorders: degradation of amino acid (C<sub>3</sub>, C<sub>4</sub>, C<sub>5</sub> family) urea cycle, uric acid and ammonia formation.

#### **Text and Reference Books**

**Reference Books:** 

- 1. Carey, F.A. & Sundberg, R. J. Advanced Organic Chemistry, Parts A & B, Plenum: U.S. (2004).
- Horspool, W. M. Aspects of Organic Photochemistry Academic Press (1976).
   March, J. Advanced Organic Chemistry John Wiley & Sons (1992).
   Marchand, A. P. & Lehr, R. E. Perc'vclic Reactions Academic Press
- (1977). 5. Strver, L. Biochemisny 411, Ed., W. H. Freeman & Co. (1995).

#### **Course Outcomes:**

| CO1 | Describe the degradation of amino acid.                                              |
|-----|--------------------------------------------------------------------------------------|
| CO2 | Understand the even chain and odd chain (saturated and unsatu-<br>rated) fatty acids |
|     | Tated) fatty actus.                                                                  |
| CO3 | Explain the, 1,3-dipolar additions, Ene reaction.                                    |
| CO4 | Develop the frontier orbital approach, PMO approach.                                 |
| CO5 | Calculate the cis-trans isomerization, non-vertical energy trans-                    |
|     | fer.                                                                                 |
| CO6 | Illustrate the delayed fluorescence Stern-volmer plot.                               |



| <b>MCH303</b> | Physical | <b>Chemistry-III</b> |
|---------------|----------|----------------------|
|---------------|----------|----------------------|

| Teaching Scheme      | Examination Scheme           |
|----------------------|------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |
|                      | Attendance – 12 Marks        |
| Credits: 4           | End Semester Exam – 70 marks |

#### Prerequisite: -

Concept of spectroscopic methods and NMR spectroscopy.

#### **Course Objectives:**

- 1. To know about recapitulation of essential quantum mechanics.
- 2. To understand the determination of bond lengths and/ or atomic masses from microwave.
- 3. To learn the non-rigid rotator.
- 4. To learn the classification of polyatomic molecules.
- 5. To know the normal coordinate analysis of homonuclear and heteronuclear diatomic molecules.
- 6. To understand the quantum mechanical theory of NMR spectroscopy.

### **Detailed Syllabus**

#### **Unit-1: Molecular Spectroscopy**

**Spectroscopic methods:** Recapitulation of essential quantum mechanics, Heisenberg Uncertainty principle, electromagnetic radiation, Einstein coefficient, Time dependent perturbation theory, Fermi Golden rule, Beer Lambert law, Line width analysis, Different branch of spectroscopy.

#### **Unit-2: Rotational Spectroscopy**

Rotational spectroscopy of diatomic molecules based on rigid rotator approximation. Determination of bond lengths and/ or atomic masses from microwave, Non-rigid rotator. Classification of polyatomic molecules. **Unit-3: Vibrational spectroscopy:** Normal coordinate analysis of homonuclear and heteronuclear diatomic molecules. Derivation of selection rules for diatomic molecules based on Harmonic oscillator approximation. Anharmonic oscillator.

**Unit-4: Raman spectroscopy:** Stokes and anti-Stokes lines. Polarizability ellipsoids. Rotational and Vibrational Raman spectroscopy. Selection rules. Polarization of Raman lines.

**Unit-5: Electronic spectroscopy:** Concept of electronic states, electronic transitions, Franck-Condon Principle, Selection rule, Dissociation energy. Application of absorption and emission spectroscopy.

Unit-6: NMR spectroscopy: Theory of NMR spectroscopy, spins of common nucleus, Quantum mechanical theory of NMR spectroscopy, Larmor precession.



#### **Text and Reference Books**

#### **Reference Books:**

- Hollas. J. M. Aluciern Specroscopy 4h Ed. John Wiley & Sons (2004). 1.

- (2004).
   Barrow. G. M. huroduction to Molecular Spectroscopy McGraw-Hi11 (1962).
   Brand, J. C. D. & Speakman. J. C. Molecular Structure: The Physical Approach2nd Ed., Edward, Arnold: London (1975).
   Chang, R. Basic Principles of Spectroscopy McGraw-Hill. New York, N.Y. (1970).
   Moore, W. J. Physical Chemistry 4h Ed. Prentice-Hall (1972).
   Warren, B. E. X-Ray Dffraction Dover Publications (1990).

#### **Course Outcomes:**

| CO1 | Describe the stokes and anti-stokes lines. Polarizability ellipsoids. |
|-----|-----------------------------------------------------------------------|
|     | Rotational and Vibrational Raman spectroscopy.                        |
| CO2 | Understand the Selection rules. Polarization of Raman lines.          |
| CO3 | Explain the selection rules for diatomic molecules based on Har-      |
|     | monic oscillator approximation.                                       |
| CO4 | Develop the Theory of NMR spectroscopy, spins of common nu-           |
|     | cleus.                                                                |
| CO5 | Explain the Fermi Golden rule, Beer Lambert law, Line width           |
|     | analysis.                                                             |
| CO6 | Illustrate the Rotational spectroscopy of diatomic molecules based on |
|     | rigid rotator approximation.                                          |



| Teaching Scheme      | Examination Scheme           |
|----------------------|------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |
|                      | Attendance – 12 Marks        |
| Credits: 4           | End Semester Exam – 70 marks |

### MCH304: Analytical Chemistry-III

#### **Prerequisite: -**

Develop the photometric titrations and chemical sensors skills.

### **Course Objectives:**

- 1. To know about comparison with other titrimetric procedures.
- 2. To understand the advantages and limitations, Typical examples.
- 3. To learn the principles of Cyclic voltammetry (CV).
- 4. To learn the humidity sensors.
- 5. To know the, Clark and Enzyme electrodes).
- 6. To understand the types of chemical sensor based on the chemically sensitive materials.

### **Detailed Syllabus**

**Unit-1: Photometric Titrations:** Basic principles, comparison with other titrimetric procedures, types of photometric titration curves, Instrumentation (titration cell, detectors, choice of analytical wavelength). Quantitative applications, typical examples of one component and multicomponent analyses.

**Unit-2: Spectrophotometric Determination of Stoichiometry of Complexes:** Job's method of continuous variation, mole ratio and slope ratio analysis, Advantages and limitations, Typical examples.

#### Unit-3: Cyclic Voltammetry

Principles of Cyclic voltammetry (CV), electrode and electrolyte, analysis of CV results, appropriate solvents, deciphering reaction mechanisms with cyclic voltammetry.

**-4: Chemical Sensors:** Principles, types of chemical sensors based on the modes of transductions, Types of chemical sensor based on the chemically sensitive materials (solid electrolyte, gas, semiconductor), Humidity sensors, Biosensors, Electrochemical sensors (Potentiometric sensors, Ion-selective electrodes, Membrane electrodes, Amperometric sensors, Clark and Enzyme electrodes).

#### **Reference Books:**

#### **Text and Reference Books**

- 1. D.A. Skoog and D.M. West, *Fundamental of Analytical Chemistry*, International Edition, 7thEdition (1996), Saunders College Publishing, Philadelphia, Holt, London.
- R.L. Pecsok, L.D. Shields, T. Cairns and L.C. McWilliam, *Modern Methods of Chem*ical Analysis, 2<sup>nd</sup> (1976), John Wiley & Sons, New York.



3. D.A. Skoog, *Principles of Instrumental Analysis*, 5th Edition (1998), Saunders College of Publishing, Philadelphia, London.

**4.** H.A. Strobel, *Chemical Instrumentation: A Schematic Approach*, 2nd Edition (1973), Addison Wesley, Reading, Mass.

### **Course Outcomes:**

| CO1 | Describe the types of photometric titration curves.                                  |
|-----|--------------------------------------------------------------------------------------|
| CO2 | Understand the quantitative applications, typical examples of one component and mul- |
|     | ticomponent analyses.                                                                |
| CO3 | Explain the potentiometric sensors, Ion-selective electrodes.                        |
| CO4 | Develop the types of chemical sensor based on the chemically sensitive materials.    |
| CO5 | Calculate the mole ratio and slope ratio analysis.                                   |
| CO6 | Illustrate the comparison with other titrimetric procedures.                         |



|                        | 8 *                          |
|------------------------|------------------------------|
| <b>Teaching Scheme</b> | <b>Examination Scheme</b>    |
| Lectures: 3 hrs/Week   | Class Test -12 Marks         |
| Tutorials: 1 hr/Week   | Teachers Assessment - 6Marks |
|                        | Attendance – 12 Marks        |
| Credits: 4             | End Semester Exam – 70 marks |

### MCH3011: Advanced Inorganic Chemistry

**Prerequisite:** Concept of chemistry of inorganic rings and solution of multielectron problems.

### **Course Objectives:**

- 1. To know about chemistry of inorganic rings.
- 2. To understand the, carboranes, metalloboranes.
- 3. To learn the synthesis of pillared clays.
- 4. To learn the pillared clays and zeolites from measurement of surface area.
- 5. To know the introduction to the solution of multielectron problems.
- 6. To understand the evaluation of energy matrices using Slater's method.

### **Detailed Syllabus**

#### Course A:

Chemistry of inorganic rings, cages and metal cluster compounds, borazines, phosphazenes, polyhedral boranes, carboranes, metalloboranes and metallocarboranes. Synthesis of pillared clays, and zeolites. Characterization of clays, pillared clays and zeolites from measurement of surface area.

#### **Course B:**

Introduction to the solution of multielectron problems, the central field approximation, angular momenta, step up and step down operators and their use in atomic spectra. Lande's interval rule. Evaluation of energy matrices using Slater's method. The weak and strong field cases. Generation of a secular determinant for 3F term (d2) in weak field. Bethe's method of descending symmetry. Non octahedral ields, tetrahedral (including contribution of odd harmonics), trigonal and tetragonal (including Ds & Dt parameters). Spin orbit coupling and its magnitude in comparison to crystal field. Splitting of eg and / $t_{2g}$  orbitals due to spin orbit coupling. for a d<sup>1</sup> and d<sup>9</sup> case. The use of double group D4. and 0. Effect of spin orbit coupling on A, E and T terms in octahedral fields.

#### **Reference Books:**

#### **Text and Reference Books**

- 1. Ballhausen C. J. Introduction to Ligand Field Theory McGraw Hill Book Co. N.Y (1962).
- Marshal. C. E. The Physical Chemistry and Miner<sup>o</sup>logv of Soil Vol. I Soil Materials John Wiley & Sons. N.Y.(1964).
- 3. Wells, A. F. Structural Inorganic Chemisery 5" Ed, Oxford University Press, Oxford (1984).
- 4. Adams, D. M. Inorganic Solids. An Introduction to Concepts in



Solid-State Structural Chemistry John Wiley & Sons, London (1974).

- Azaroff, L V. Introduction to Solids Tata McGraw Hill Publishing Co. Ltd. Bombay- New Delhi (1960).
- 6. Breck. D. W. Zeolites Molecular Sieves- Structure, Chemist))) and Use. John Wiley & Sons N.Y. (1974).

### **Course Outcomes:**

| CO1 | Describe the synthesis of pillared clays, and zeolites.                  |
|-----|--------------------------------------------------------------------------|
| CO2 | Understand the cluster compounds, borazines, phosphazenes.               |
| CO3 | Explain the spin orbit coupling.                                         |
| CO4 | Develop the eeffect of spin orbit coupling on A, E and T terms in        |
|     | octahedral fields.                                                       |
| CO5 | Calculate the Non octahedral fields, tetrahedral (including contribution |
|     | of odd harmonics).                                                       |
| CO6 | Illustrate the generation of a secular determinant for 3F term (d2) in   |
|     | weak field.                                                              |



| Teaching Scheme      | Examination Scheme                                    |
|----------------------|-------------------------------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks                                  |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks<br>Attendance – 12 Marks |
| Credits: 4           | End Semester Exam – 70 marks                          |

### MCH3021: Advanced Organic Chemistry

**Prerequisite:** Concept of newer synthetic reactions and reagents and heterocyclic chemistry.

### **Course Objectives:**

- 1. To know about thermodynamic versus Kinetic enolates.
- 2. To understand the applications in carbon-carbon bond formation and related reactions.
- 3. To learn the applications of phase transfer catalysis.
- 4. To learn the benzofused five membered heterocycles with one heteroatom.
- 5. To know the chemistry of bicyclic compounds containing one or more heteroatoms.
- 6. To understand the phenoxazines, phenothiazines, chemistry of porphyrins.

### **Detailed Syllabus**

#### Section-A:

#### Newer Synthetic Reactions and Reagents

Enolates, Thermodynamic versus Kinetic enolates, enonate equivalents and enamines: Applications in carbon-carbon bond formation and related reactions. Phosphorus, Sulphur and nitrogen ylides: Preparation and applications in organic synthesis its and mechanism. Principles and applications of phase transfer catalysis, crown ethers and polymer supported reagents in organic synthesis. Principles of Green Chemistry and its applications: Biotransformations: Classification of enzymes, advantages and disadvantages, applications in organic synthesis; Principles of ultrasound and microwave assisted organic synthesis.

#### Section-B

#### Heterocyclic Chemistry

Introduction to heterocycles: Nomenclature, spectral characteristics, reactivity and aromaticity Synthesis and reactions of three and four membered heterocycles, e.g., aziridine, azirine, azetidine, oxiranes, thiarines, oxetenes and thietanes. Five membered rings with two heteroatoms: pyrazole, imidazole, oxazole, thiazole, isothiazole and benzofused analogs. Benzofused five membered heterocycles with one heteroatom, e.g. indole, benzofuran,



benzothiophene. Chemistry of bicyclic compounds containing one or more heteroatoms. Benzofused six membered rings with one, two and three heteroatoms: benzopyrans, quinolines, isoquinolines, quinoxazalines, acridines, phenoxazines, phenothiazines, chemistry of pophyrins.

#### **Text and Reference Books**

#### **Reference Books:**

- Carey, F.A. & Sundberg, R. J. Advanced Organic Chemistry, Parts A & B, Plenum: U.S. (2004).
- 2. Carruthers, W. Modern Methods of Organic Synthesis Cambridge University Press (I 971).
- 3. Acheson, R. M. introduction to the Chemistry of Heterocyclic Compounds John Wiley & Sons (1976).

#### **Course Outcomes:**

| CO1 | Describe the Thermodynamic versus Kinetic enolates.                                 |
|-----|-------------------------------------------------------------------------------------|
| CO2 | Understand the Preparation and applications in organic synthesis its and mechanism. |
| CO3 | Explain the crown ethers and polymer supported reagents in or-<br>ganic synthesis.  |
| CO4 | Develop the chemistry of pophyrins.                                                 |
| CO5 | Calculate the Benzofused six membered rings with one, two and three heteroatoms.    |
| CO6 | Illustrate the benzopyrans, quinolines, isoquinolines.                              |



| Teaching Scheme      | Examination Scheme           |
|----------------------|------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |
|                      | Attendance – 12 Marks        |
| Credits: 4           | End Semester Exam – 70 marks |
|                      |                              |

### MCH3031: Advanced Physical Chemistry

#### **Prerequisite: -**

Concept of irreversible thermodynamics and transport phenomena.

### **Course Objectives:**

- 1. To know about meaning and scope of irreversible thermodynamics.
- 2. To understand the phenomenological laws- Linear laws.
- 3. To learn the Gibbs equation.
- 4. To learn the Fick's first and second laws.
- 5. To know the relation between lux and viscosity.
- 6. To understand the factors affecting the CMC of surfactants, counterion binding to micelles.

### **Detailed Syllabus**

Unit-1: Irreversible thermodynamics: Meaning and scope of irreversible thermodynamics. Thermodynamic criteria for non-equilibrium states, Phenomenological laws- Linear laws, Gibbs equation, Onsager's reciprocal relation.

Unit-2: Transport phenomena: Diffusion coefficients, Fick's first and second laws, relation between lux and viscosity, relation between diffusion coefficient and mean free path, relation between thermal] conductivity/viscosity and mean free path of a perfect gas, Einstein relation, Nernst-Einstein equation.

Unit-3: Surface phenomena: Surface active agents, classification of surface active agents, micellization, hydrophobic interaction, critical micelle concentration (CMC), Krafft temperature, Factors affecting the CMC of surfactants, counterion binding to micelles, thermodynamics of micellization, solubilization, microemulsions, reverse micelles, surface films (eletrokinetic phenomena), catalytic activity at surfaces. Fast reactions: luminescence and energy transfer processes, study of kinetics by stopped-flow



technique, relaxation method, flash photolysis and magnetic resonance method. Kinetics of solid state reactions.

#### **Text and Reference Books**

#### **Reference Books:**

- 1. Katchalsky, A. & Curren, P. F. Non Equilibrium Thermodynamics in Biophysics Harvard University Press: Cambridge (1965).
- 2. Zwanzig, R. Nonequilibrium Statistical Mechanics Oxford University Press (2001)
- Laidler, K. J. Chemical Kinetics 3rd Ed., Benjamin Cummings (1997).
- 4. Thomas, J. M. & Thomas, M. J. Principles and Practice of Heterogeneous Catalysis John Wiley & Sons (1996).
- Campbell, I. M. Catalysis at Surfaces Chapman and Hall, New York/London (1988).
- Chorkendorff, lb & Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics WileyVCH (2003).
- Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 81h Ed., Oxford University Press (2006).
- Shaw, D. J. Introduction to Colloid and Surface Chemistry 2nd Ed. Butterworths (1970).

### **Course Outcomes:**

| CO1 | Describe the thermodynamic criteria for non-equilibrium states.        |
|-----|------------------------------------------------------------------------|
| CO2 | Understand themicellization, hydrophobic interaction, critical micelle |
|     | concentration (CMC).                                                   |
| CO3 | Explain the, Krafft temperature, Factors affecting the CMC of surfac-  |
|     | tants.                                                                 |
| CO4 | Develop the, counterion binding to micelles, thermodynamics of mi-     |
|     | cellization.                                                           |
| CO5 | Calculate the, solubilization, microemulsions                          |
| CO6 | Illustrate the, reverse micelles, surface films (eletrokinetic phe-    |
|     | nomena), catalytic activity at surfaces.                               |



| Teaching Scheme      | Examination Scheme           |
|----------------------|------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |
|                      | Attendance – 12 Marks        |
| Credits: 4           | End Semester Exam – 70 marks |
|                      |                              |

### MCH3041: Advanced Analytical Chemistry

#### **Prerequisite: -**

Concept of Microanalysis of real-world samples and Inorganic microanalysis.

### **Course Objectives:**

- 1. To know about Scope and objectives of microanalytical technique.
- 2. To understand the Microanalytical technique based on size and amount of the sample.
- 3. To learn the polymeric materials.
- 4. To learn the estimation of protein in egg albumin.
- 5. To know the saponification value of fats/oils.
- 6. To understand the estimation of blood cholesterol, DNA and RNA.

### **Detailed Syllabus**

Unit-1: General introduction: Scope and objectives of microanalytical technique, Difference between micro and trace analysis, Microanalytical technique based on size and amount of the sample.

**Unit-2: Microanalysis of real-world samples:** Molecular recognition and targeted analysis using macrocyclic (crown ethers), macrobicyclic (cryptands), Supramolecular compounds (calixarenes) and polymeric materials.

**Unit-3: Biochemical microanalysis:** Estimation of carbohydrates, amino acids and ascorbic acid in biological systems, Estimation of protein in egg albumin, Estimation of free fatty acid, Iodine value and saponification value of fats/oils, Estimation of blood cholesterol, DNA and RNA.

**Unit-4: Inorganic microanalysis:** Principle, technique, qualitative and quantitative applications with special reference to Ring-oven technique and Ring colorimetric technique, chemical microscopy.

**Unit-5: Organic microanalysis:** Determination of alkoxy, acetyl, acyl, hydroxyl, carbonyl, active hydrogen, nitroso, sulfonyl, amides and ester groups, Determination of molecular weight and percentage purity of carboxylic acid, estimation of sugars, estimation of unsaturation.

**Unit-6: Microanalysis by kinetic methods:** Theoretical basis, Kinetic parameters, Kinetic methods of microanalysis: Tangent, fixed time and addition method.



#### **Text and Reference Books**

#### **Reference Books:**

- 1. P.L. Kirk, Quantitative Ultramicroanalysis, John Wiley.
- 2. C.L. Wilson and D.L. Wilson, *Comprehensive Analytical Chemistry*", Vol. I (A) and I(B), Elsevier.
- 3. G.D. Christian, Analytical Chemistry, John Wiley & Sons, New York (2001).
- 4. S.M. Khopkar, *Analytical Chemistry of Macrocyclic and Supramolecular Compounds*, Narosa Publishing House, New Delhi (2002).

5. Jag Mohan, Organic Analytical Chemistry - Theory and Practice, Narosa Publishing House, New Delhi (2003).

### **Course Outcomes:**

| CO1 | Describe the estimation of free fatty acid, Iodine value. |
|-----|-----------------------------------------------------------|
| CO2 | Understand the determination of alkoxy.                   |
| CO3 | Explain the active hydrogen, nitroso.                     |
| CO4 | Develop the percentage purity of carboxylic acid.         |
| CO5 | Calculate the estimation of unsaturation.                 |
| CO6 | Illustrate the Tangent, fixed time and addition method.   |



## MCH351: Inorganic Chemistry Practical-III

| Teaching Scheme      | Examination Scheme            |
|----------------------|-------------------------------|
| Lectures: 3 hrs/Week | Class Test -8 Marks           |
|                      | Teachers Assessment – 4 Marks |
|                      | Attendance – 8 Marks          |
| Credits: 2           | End Semester Exam – 30 marks  |

**Prerequisite:** Develop the inorganic chemistry practical skills.

#### **Course Objectives:**

- 1. To know about Synthesis of inorganic complexes/compounds.
- 2. To understand the characterization by various physicochemical methods.
- 3. To learn the IR, UV, Visible, NMR, magnetic susceptibility.

### **Detailed Syllabus**

Synthesis of inorganic complexes/compounds and their characterization by various physicochemical methods, viz. IR, UV, Visible, NMR, magnetic susceptibility etc. Selection can be made from the following or any other from the existed literature.

(i) Metal acetylacetonates.

(ii) Cis and trans isomers of  $[Co(en)_2C_{12}]Cl$ .

(iii) Ion-exchange separation of oxidation states of vanadium.

(iv) Preparation of Ferrocene.

(v) Preparation of triphenyl phosphene  $Ph_3P$ , and its transition metal com plexes.

(vi) Determination of Cr(III) complexes:  $[Cr(H_20)_6]NO_3.3H20;$  $[Cr(H_2O)_4Cl_2]C1.2H_20;$   $[Cr(en)_3]Cl_3;$   $Cr(acac)_3.$ 

(vii) Tin(IV) iodide, Tin(IV) chloride, Tin(I1) iodide.

(viii) (N,N)-bis(salicyldehyde)ethylenediamine Salen H2; and its cobalt complex [Co(Salen)].

(ix) Reaction of Cr(111) with multidentate ligands, a kinetics experiment.(x) Vanadyl acetylacetonate.

(xi) Other new novel synthesis reported in literature from time to time.

#### **Text and Reference Books**

#### **References:**

- 1. Metal acetylacetonates Inorg. Synth.1957, 5, 130.
- 2. Cis and trans isomers of  $[Co(en)_2C_{12}]Cl J. Chem. Soc., 960, 4369.$
- 3. Ion-exchange separation of oxidation states of vanadium. J. Chem., *Ehic.*,980, 57, 316:978. 55, 55.
- 4. Preparation of Ferrocene. J. Chem. Educ. 1966, 43, 73; 1976, 53, 730.
- 5. Tin(IV) iodide, Tin(IV) chloride, Tin(I1) iodide. *Inorg. Synth*.1953,4 119.
- 6. (N,N)-bis(salicyldehyde)ethylenediamine Salen H2; and its cobalt



complex [Co(Salen)]. J. Chem\_Educ.1977, 54, 443,1973, 50, 670.
7. Reaction of Cr(111) with multidentate ligands, a kinetics experiment. *J. Am. Chem.* Soc.1953. 75, 5670.

### **Course Outcomes:**

| <i><b>G</b></i> <b>( ( ( ( ( ( ( ( ( (</b> |                                                                                                                                              |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| CO1                                        | Describe the Metal acetylacetonates                                                                                                          |
| CO2                                        | Understand the Cis and trans isomers of $[Co(en)_2C_{12}]Cl$ .                                                                               |
| CO3                                        | Explain the Ion-exchange separation of oxidation states of vana-                                                                             |
|                                            | dium.                                                                                                                                        |
| CO4                                        | Preparation of Ferrocene.                                                                                                                    |
| CO5                                        | Preparation of triphenyl phosphene Ph <sub>3</sub> P, and its transition metal complexes.                                                    |
| CO6                                        | Illustrate the $Cr(H_20)_6$ ]NO <sub>3</sub> .3H20; [ $Cr(H_2O)_4Cl_2$ ]C1.2H <sub>2</sub> 0; [ $Cr(en)_3$ ]C1 <sub>3</sub> ; $Cr(acac)_3$ . |



| MCH352:  | Organic | Chemistry  | Practical-III   |
|----------|---------|------------|-----------------|
| WICH332. | Organic | Chemisti y | 1 1 actical-111 |

| Teaching Scheme      | <b>Examination Scheme</b>     |
|----------------------|-------------------------------|
| Lectures: 3 hrs/Week | Class Test -8 Marks           |
|                      | Teachers Assessment – 4 Marks |
|                      | Attendance – 8 Marks          |
| Credits: 2           | End Semester Exam – 30 marks  |
|                      |                               |

**Prerequisite:** Develop the organic chemistry practical skills.

### **Course Objectives:**

- 1. To know about semi-micro qualitative analysis of single/poly functional compounds.
- 2. To learn the separation of mixtures by chemical and chromatographic methods.
- 3. To learn the isolation of caffeine from tea leaves.

### **Detailed Syllabus**

Qualitative analysis Semi-micro qualitative analysis of single/poly functional compounds data). 2. Separation of mixtures by chemical and chromatographic methods. 3. Isolation of natural products

i. Isolation of caffeine from tea leaves

ii. Isolation of piperine from black pepper

iii. Isolation of 13-carotene from carrots

iv. Isolation of lycopenc from tomatoes v. Isolation of cholesterol from bile stones

#### **Text and Reference Books**

#### Reference Books:

- 1. Vogel, A. 1. Vogel's Qualitative Inorganic Analysis 7th ed. (revised by G. Svehla) Longmans (1996) ISBN 058-221866-7
- 2. Vogel, A. 1. Vogel's Textbook of Quantitative Chemical Analysis -5th Ed. Longman (1989).
- 3. Addison Ault Techniques and Experiments for Organic Chemistry 6th Ed. University Science Books (1998).
- 4. Mann, F. G. & Saunders, B. C. Practical Organic Chemistry 4th Ed. Orient Longmans (1990).
- 5. Vogel, A. I. Vogel's Textbook of Practical Organic Chemistry 5th Ed.



(revised by A.R. Tatchell et al.) Wiley (1989) ISBN 0582-46236-3

### **Course Outcomes:**

| CO1 | Describe the Separation of mixtures by chemical and chromato-<br>graphic methods. |
|-----|-----------------------------------------------------------------------------------|
| CO2 | Understand the Isolation of 13-carotene from carrots.                             |
| CO3 | Explain the Isolation of lycopenc from tomatoes.                                  |
| CO4 | Develop the Isolation of cholesterol from bile stones.                            |
| CO5 | Calculate the Isolation of natural products.                                      |
| CO6 | Illustrate the Isolation of piperine from black pepper.                           |



| Teaching Scheme      | Examination Scheme            |
|----------------------|-------------------------------|
| Lectures: 3 hrs/Week | Class Test -8 Marks           |
|                      | Teachers Assessment – 4 Marks |
|                      | Attendance – 8 Marks          |
| Credits: 2           | End Semester Exam – 30 marks  |

MCH353: Physical Chemistry Practical-III

**Prerequisite:** Develop the physical chemistry practical skills.

### **Course Objectives:**

- 1. To know about Titrate a moderately strong acid (salicylic/mandelic acid).
- 2. To understand the double alkali method.
- 3. To learn the salt-line method.

### **Detailed Syllabus**

Titrate a moderately strong acid (salicylic/mandelic acid) by the

(a) salt-line method
(b) double alkali method.
Titrate a mixture of copper sulphate, acetic acid and sulphuric acid with dium hydroxide. sodium

3. Titrate a tribasic acid (phosphoric acid) against NaOH and Ba(OH)<sub>2</sub> con-ductometrically.

4. Estimate the concentration of each component of a mixture of AgNO<sub>3</sub> and HNO<sub>3</sub> by conductometric titration against NaOH.

5. Determine the degree of hydrolysis of aniline hydrochloride.

6. Determine the critical micelle concentration of a surfactant(sodium lauryl sulphate) by the conductivity method.

7. Ternary phase diagram of water, benzene, and acetic acid.

#### **Text and Reference Books**

#### **Reference Books:**

- 1. Daniels, F., Williams, J. W., Bender, P., Alberty, R. A., Conwell, C. D. & Harriman, J. E. Experimental Physical Chemistry, McGraw-Hill (1962).
- 2. Das & R. C. & Behera, B., Experimental Physical Chemistry, Tata McGraw-Hill Publishing Co. Pvt. Ltd. (1993).
- 3. Shoemaker, D. P., Garland, C. W. & Nibler, J. W. Experiments in Physical Cheinisay, McGraw-Hill: New York (1996).
- 4. Day, R. A., Jr. & Underwood, A. L. Quantitative Analysis3rd Ed. Prentice-Hall India Pvt. Ltd.: New Delhi (1977).

### **Course Outcomes:**



| CO1 | Describe the titrate a mixture of copper sulphate.                                                                                                        |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Understand the titrate a tribasic acid.                                                                                                                   |
| CO3 | Explain the estimate the concentration of each component of a mixture of AgNO <sub>3</sub> and HNO <sub>3</sub> by conductometric titration against NaOH. |
| CO4 | Develop the degree of hydrolysis of aniline hydrochloride.                                                                                                |
| CO5 | Calculate the Ternary phase diagram of water, benzene, and acetic acid.                                                                                   |
| CO6 | Illustrate the titrate a moderately strong acid.                                                                                                          |



| WICH354: Analytical Chemistry Practical-1 |                               |
|-------------------------------------------|-------------------------------|
| <b>Teaching Scheme</b>                    | <b>Examination Scheme</b>     |
| Lectures: 3 hrs/Week                      | Class Test -8 Marks           |
|                                           | Teachers Assessment – 4 Marks |
|                                           | Attendance – 8 Marks          |
| Credits: 2                                | End Semester Exam – 30 marks  |

### MCH354. Analytical Chamistry Practical

**Prerequisite:** Develop the analytical chemistry experiments skills.

### **Course Objectives:**

- 1. To know about ferrous ammonium sulfate potentiometrically with standard ceric sulfate solution.
- 2. To understand the Conductometric titration of (I) strong acid, monobasic weak acid or polybasic weak acid with strong base.
- 3. To learn the Determination of Na<sub>2</sub>CO<sub>3</sub> content (in %) of washing soda using a pH meter.

### **Detailed Syllabus**

- 1. Determination of ferrous ammonium sulfate potentiometrically with standard ceric sulfate solution (Direct and back titration).
- 2. Determination of concentration of halide ion(s) in the given solution potentiometrically.
- 3. Conductometric titration of (I) strong acid, monobasic weak acid or polybasic weak acid with strong base (ii) zinc with EDTA, and (iii) KCl vs AgNO<sub>3</sub>
- 4. To obtain the protolysis curves involving cases of weak acid, mixture of acids and polybasic acid employing a pH meter and determine the amount of the respective acid (in ppm) in the given solution
- 5. Determination of Na<sub>2</sub>CO<sub>3</sub> content (in %) of washing soda using a pH meter
- 6. Analysis of mixture of carbonate and bicarbonate (percent in ppm range) using a pH meter or suitable indicators
- 7. To study the current-potential characteristics of  $Cd^{2+}$  ions using DC polarography, sampled DC, cyclic voltammetry and pulse polarographic techniques
- 8. Determination of Cd<sup>2+</sup> ions concentration in given solution polarographically following (I) calibration (ii) standard addition and (iii) the pilot-ion procedures
- 9. Determination of  $Zn^{2+}$  ions present at the ppm level in the solution employing conventional D.C.and pulse polarographic techniques
- 10. Determination of trace metal impurities present in a polluted water sample by anodic stripping voltammetric procedure

#### **Text and Reference Books**

#### **Reference Books:**

1. Shoemaker, D. P., Garland, C. W. & Nibler, J. W. Experiments in Physical Cheinisay, McGraw-Hill: New York (1996).



- Day, R. A., Jr. & Underwood, A. L. Quantitative Analysis3rd Ed. Prentice-Hall India Pvt. Ltd.: New Delhi (1977).
- Burns, D. T. & Ratenbury, E. M. Introductory Practical Physical Chemistry Pergamon Press (1966).
- 4. Harris, D. C. •Quantitative Chemical Analysis 6th Ed. W. H. Freeman & Co. (2002).
- Willard, H. H.,L. L., Dean, J. A.Settle, F. A.(Eds.) Instrumental AielitudY of Analysis - 7th Ed., Wadsworth Publishing (February1988) ISBN 0534081428.

### **Course Outcomes:**

| CO1 | Describe the protolysis curves involving cases of weak acid, mixture of acids.         |
|-----|----------------------------------------------------------------------------------------|
| CO2 | Understand the analysis of mixture of carbonate and bicarbonate.                       |
| CO3 | Explain the current-potential characteristics of $Cd^{2+}$ ions using DC polarography. |
| CO4 | Develop the standard addition.                                                         |
| CO5 | Calculate the Cd <sup>2+</sup> ions concentration in given solution polarographically. |
| CO6 | Illustrate the pilot-ion procedures.                                                   |

### SEMESTER-IV

### **INORGANIC CHEMISTRY SPECIALIZTION**

| Special oscopic memous |                              |  |
|------------------------|------------------------------|--|
| Teaching Scheme        | <b>Examination Scheme</b>    |  |
| Lectures: 3 hrs/Week   | Class Test -12 Marks         |  |
| Tutorials: 1 hr/Week   | Teachers Assessment - 6Marks |  |
|                        | Attendance – 12 Marks        |  |
| Credits: 4             | End Semester Exam – 70 marks |  |

### MCH4012: Spectroscopic Methods

#### **Prerequisite: -**

Concept of Vibrational spectroscopy and Electronic paramagnetic resonance spectroscopy.

### **Course Objectives:**

- 1. To know about vibrational motion and energies.
- 2. To understand the number of vibrational modes.
- 3. To learn the quadrupole interactions.
- 4. To learn the resonance Raman spectroscopy.
- 5. To know the Pascal's constants derivation and its applications.
- 6. To understand the spin-orbit coupling.

### **Detailed Syllabus**

#### **Course-A:**

**Unit-1: Vibrational spectroscopy:** Vibrational motion and energies, number of vibrational modes. vibrational spectra and symmetry, selection rules, symmetry of an entire set of normal vibrations, Raman spectra and selection rules, polarized and depolarized Raman lines, resonance Raman spectroscopy

Unit-2: Mossbauer spectroscopy: Doppler shift and recoil energy, isomer shift and its interpretation, quadrupole interactions, effect of magnetic field on Mossbauer spectra, applications to metal complexes, metal carbonyls. Fe-S. cluster.

**Unit-3: Magnetism:** Types of magnetic behaviour, magnetic susceptibilities, Pascal's constants.derivation and its applications. Spin-orbit coupling and susceptibility of transition metal ions and rare earths; magnetic moments of metal complexes with crystal field terms of A, E and T symmetry.

**Unit-4: Mass spectroscopy:** Experimental arrangements and presentation of spectra, molecular ions, appearance and ionization potential, fragmentation, ion reactions and their interpretation, molecular weight determination, thermodynamic data. Application of mass spectroscopy to inorganic compounds.

#### **Course B:**

Unit-5: Potential energy level diagram. Symmetry requirements for n to n\*



transitions, oscillator strengths, transition moment integrals (electric dipole and magnetic dipole moment operator), selection rules, spin orbit and vibronic coupling contributions, mixing of d and p orbitals in certain symmetries. Polarized absorption spectra. Survey of the electronic spectra of tetragonal complexes. Calculation of Dq and  $\beta$  for Ni(II) Oh complexes, nephelauxetic effect, effect of o and it bonding on the energy of t2g orbitals and DT spectrochemical series, effect of distortion on the d orbital energy level (Td, D2d, D4h).

Unit-6: Nuclear magnetic resonance spectroscopy: Nuclear spin quantum number, I. and its calculation using the nuclear shell model, spin parity rules. Types of nuclei based on value of I, nuclear spin angular momentum quantum number, and its relation to classical magnetic moment. Behaviour of a bar magnet in a magnetic field. Application of chemical shifts.

Unit-7: Electronic paramagnetic resonance spectroscopy: Electronic Zeeman effect, Zeeman Hamiltonian and EPR transition energy. EPR spectrometers, presentation of spectra. The effects of electron Zeeman, nuclear Zeeman and electron nuclear hyperfine terms in the Hamiltonian on the energy of the hydrogen atom. Shift operators and the second order effect. Hyperfine splitting.

#### **Text and Reference Books**

#### **Reference Books:**

- 1.
- Ebsworth, E. A.O. Structural Methods in Inorganic Chemistry Blackwell Scientific Publications (1991). Drago, R. S. Physical Methods in Chemisuy W. B. Saunders Co.: U.K. (1977). 2.
- 3. Carrington, A. & McLachlan, A. D. Introduction to Magnetic Resonance Chapman & Hall: N.Y. (1983).

### **Course Outcomes:**

| CO1 | Describe the nuclear spin quantum number.                                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Understand the effects of electron Zeeman, nuclear Zeeman and electron nuclear hyperfine terms in the Hamiltonian on the energy of the hydrogen atom. |
| CO3 | Explain the shift operators and the second order effect. Hyperfine splitting.                                                                         |
| CO4 | Develop the polarized absorption spectra. Survey of the electronic spectra of tetragonal complexes.                                                   |
| CO5 | Calculate the quadrupole interactions, effect of magnetic field on Mossbauer spectra.                                                                 |
| CO6 | Illustrate the symmetry of an entire set of normal vibrations, Raman spectra and selection rules.                                                     |



| Teaching Scheme      | Examination Scheme           |  |
|----------------------|------------------------------|--|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |  |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |  |
|                      | Attendance – 12 Marks        |  |
| Credits: 4           | End Semester Exam – 70 marks |  |
|                      |                              |  |

### MCH4013: Bio-Inorganic Chemistry

#### Prerequisite: -

Concept of survey of organometallic complexes according to ligands. pi bonded organometallic compounds and metal complexes as probes of structure and reactivity with metal substitution.

### **Course Objectives:**

- 1. To know about structure and bonding.
- 2. To understand the nitrosyls, tertiary phosphines.
- 3. To learn the-, biotransformation of non metallic inorganic compounds.
- 4. To learn the metal-carbon multiple bonds.
- 5. To know the role of metal ions in replication and transcription process of nucleic acids.
- 6. To understand the biochemistry of dioxygen, bioinorganic chips and biosensors.

### **Detailed Syllabus**

#### **Course A:**

General introduction, Structure and bonding, Survey of organometallic complexes according to ligands. pi bonded organometallic compounds including carbonyls, nitrosyls, tertiary phosphines, hydrides, alkene, alkyne, cyclobutadiene, cyclopentadiene, arene compounds and their M.O. diagrams. Metal-carbon multiple bonds. Fluxional omanometallic compounds including z-ally1 complexes and their characterization.

### **Course B:**

Fundamentals of inorganic biochemistry, geo-chemical effects on life systems, essential and non-cssential elements in bio-systems. Role of alkali/alkaline earth metals in bio-systems. Role of 3d block elements and-nonmetals in bio-systems. Role of metal ions in oxygen carriers and synthetic oxygen carriers. Designing of chelating agents and metal chelates as medicines. Fixation or dinitrogen biologically and abiologically-, biotrans-



formation of non metallic inorganic compounds. Environmental bioinorganic chemistry. Metal ions as probes for locating active sites. Anti-oxidants. Metal ions as antioxidants, metal ion enhancing catalytic activity of enzymes (Biocatalysts). Metal complexes of polynucleotides, nucleosides and nucleic acids (DNA & RNA) Template temperature, stability of DNA. Role of metal ions in replication and transcription process of nucleic acids. Biochemistry of dioxygen, bioinorganic chips and biosensors. Metals in the regulation of biochemical events. Transport and storage of metal ions in vivo. Metal complexes as probes of structure and reactivity with metal substitution.

#### **Text and Reference Books**

#### **Reference Books:**

- Green, M. L. H. Organometallic Compounds Chapman & Hall: U.K. (1968).
- 2. Coates, U., Green, iv!. L. t-i. & roweu, r. Principles of Organomeraiiic Chemistry Chapman and Hall: U.K.(1988).
- Lippard, S. J. & Berg, J. M. Principles of Bioinorganic Chemistry Univ. Science Books (1994).

#### **Course Outcomes:**

| CO1 | Describe the geo-chemical effects on life systems, essential and |
|-----|------------------------------------------------------------------|
|     | non-cssential elements in bio-systems.                           |
| CO2 | Understand the role of alkali/alkaline earth metals in bio-sys-  |
|     | tems.                                                            |
| CO3 | Explain the designing of chelating agents and metal chelates as  |
|     | medicines.                                                       |
| CO4 | Develop the metals in the regulation of biochemical events.      |
| CO5 | Calculate the transport and storage of metal ions in vivo.       |
| CO6 | Illustrate the z-ally1 complexes and their characterization.     |



| Teaching Scheme      | <b>Examination Scheme</b>    |  |
|----------------------|------------------------------|--|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |  |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |  |
|                      | Attendance – 12 Marks        |  |
| Credits: 4           | End Semester Exam – 70 marks |  |

### **MCH4014: Analytical Techniques**

**Prerequisite:** Concept of analytical techniques.

### **Course Objectives:**

- 1. To know about polarography (DC, AC and pulse).
- 2. To understand the coulometry and anode stripping voltammetry.
- 3. To learn the dispersive and Fourier Transformed Raman.
- 4. To learn the Raman and surface Enhanced Raman Spectroscopy.
- 5. To know the GC-IR, TG-1R spectroscopy.
- 6. To understand the neutron diffraction and electron diffraction.

### **Detailed Syllabus**

#### **Course A: Analytical techniques (Instrumentation and Applications)**

Unit-1: (i)Electroanalytical methods:- Polarography (DC, AC and pulse),

cyclic voltammetry, coulometry and anode stripping voltammetry.

**Unit-2:** (ii)**Optical methods:-** UV/Visible, X-ray photoelectron spectroscopy (XPS), Auger. Electron Spectroscopy (AL'S), ESCA, Atomic absorption and emission spectroscopy.

(iii) Imaging Techniques: Electron microscopy (SEM, TEM)

Unit-3: (iv)Infrared Spectroscopy: Dispersive and Fourier Transformed Raman, Resonance Raman and Surface Enhanced Raman Spectroscopy-Dispersive and Fourier Transformed.

(v) Hifanated Techniques: GC-IR, TG-1R Spectroscopy, GC-Mass Spectroscopy and any other.

Course B

Unit-4: (i) Diffraction Methods: Single crystal and Powder X-Ray Diffraction and their applications for inorganic compounds, neutron diffraction and electron diffraction.

Unit-5: (ii) Separation Methods: Theory and applications of separation



methods in analytical chemistry: solvent extraction, ion exchangers including liquid ion exchangers and chromatographic methods for identification and estimation of multicomponent systems (such as TLC, GC, HPLC, etc.). (iii) Thermal Methods: TG, DTA, DSC and thermometric titrations.

#### **Text and Reference Books**

#### **Reference Books:**

- Cheetham, A. K. & Day, P., Eds. Solid Stale Chemist)), Techniques Clarendon Press, Oxford (1987)
- Christian, G. D., Analytical Chemist', 60, Ed., John Wiley & Sons, Inc. (2004).
- Skoog, D. A., West, D. M., Holler, R. J & Nieman, T. A. Principles of Instrumental Analysis Saunders Golden Sunburst Series (1997).
- Willard, H. H., Merritt, L. L., Dean, J. A. & Settle, F. A.(Eds.) Instrumental Methods of Analysis -7h Ed., Wadsworth Publishing (1988) ISBN 0534081428
- 5. Khopkar, S. M. Concepts in Analytical Chemist)), Halsted (1984).

| CO1 | Describe the cyclic voltammetry.                                   |
|-----|--------------------------------------------------------------------|
| CO2 | Understand the solvent extraction, ion exchangers including liq-   |
|     | uid ion exchangers.                                                |
| CO3 | Explain the chromatographic methods for identification and estima- |
|     | tion of multicomponent systems.                                    |
| CO4 | Develop the TG, DTA, DSC and thermometric titrations.              |
| CO5 | Calculate the electron spectroscopy (AL'S), ESCA, Atomic absorp-   |
|     | tion and emission spectroscopy.                                    |
| CO6 | Illustrate the Electron microscopy (SEM, TEM).                     |


| Teaching Scheme      | Examination Scheme           |
|----------------------|------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |
|                      | Attendance – 12 Marks        |
| Credits: 4           | End Semester Exam – 70 marks |
|                      |                              |

# MCH4015: Nuclear and Radio Chemistry

Prerequisite: Concept of inorganic materials.

# **Course Objectives:**

- 1. To know about band theory (Zone model, Brillouin Zones, Limitations of the Zone model).
- 2. To understand the magnetic and thermal properties of inorganic materials.
- 3. To learn the superconductors with special emphasis on the synthesis and structure of high temperature superconductors.
- 4. To learn the characteristic differences over bulk materials.
- 5. To know the Dynamic Light Scattering.
- 6. To understand the interaction of nuclear radiations with matter.

# **Detailed Syllabus**

### **Course A: Inorganic Materials**

Introduction to the solid state, metallic bond, Band theory (Zone model, Brillouin Zones, Limitations of the Zone model); Defects in solids, p-type and n-type; Inorganic semiconductors (use in transistors, IC, etc.); Electrical, optical, magnetic and thermal properties of inorganic materials, Superconductors with special emphasis on the synthesis and structure of high temperature superconductors. Solid State Lasers (Ruby, YAG and tunable lasers): Inorganic phosphor materials; synthesis and advantages of optical ibres over conducting fibres.Preparation of nanomaterials and their characteristic differences over bulk materials. Principles of Electron Microscopy, Dynamic Light Scattering.

### Course B: Nuclear and Radiochemistry

Nuclear structure and nuclear stability. Nuclear Models. Radioactivity and nuclear reactions (including nuclear ission and fusion reactions). Hot atom Chemistry, Nuclear Fission and Fusion Reactors. The interaction of nuclear radiations with matter. Radiation hazards and therapeutics. Tracer techniques and



their applications. Isotope dilution and radio-activation rnethods analysis. Fission product analysis (e.g., the technique of isolating two or three different fission products of uranium (U), thorium (Th) and determining the yields).

#### **Text and Reference Books**

#### **Reference Books:**

Harvey, B. C. Introduction to Nuclear Chemistry Prentice-Hall (1969).

Keer, H. V. Principles of the Solid State Wiley Eastern Ltd.: New Delhi (1993).

West, A. R. Solid State Chemistry and its Applications John Wiley & Sons (1987).

Hannay, N. Treatise on Solid State Chemistry Plenum (1976).

Tirnp, G., Ed. Nanotechnology Springer-Verlag: N. Y. (1999).

Course Outcomes: After completing this course, students will be able to achieve the followings

| CO1 | Describe the Solid State Lasers (Ruby, YAG and tunable lasers).        |
|-----|------------------------------------------------------------------------|
| CO2 | Understand the inorganic phosphor materials.                           |
| CO3 | Explain the principles of Electron Microscopy,.                        |
| CO4 | Develop the limitations of the Zone model); Defects in solids, p-      |
|     | type and n-type.                                                       |
| CO5 | Calculate the nuclear structure and nuclear stability.                 |
| CO6 | Illustrate the isotope dilution and radio-activation methods analysis. |



| MCH451: Inorganic Chemistry Practical-IV |                               |
|------------------------------------------|-------------------------------|
| Teaching Scheme                          | <b>Examination Scheme</b>     |
| Lectures: 3 hrs/Week                     | Class Test -8 Marks           |
|                                          | Teachers Assessment – 4 Marks |
|                                          | Attendance – 8 Marks          |
| Credits: 2                               | End Semester Exam – 30 marks  |

Char 1/11/51

Prerequisite: Develop the experimental skills.

### **Course Objectives:**

- 1. To know about analysis of ores.
- 2. To understand the metal oxalate hydrates.
- 3. To learn the pH- meter, potentiometer.

# **Detailed Syllabus**

L(a) Analysis of ores, alloys and inorganic substances by various chemical methods.

(b) Instrumental methods of analysis utilising lame photometer., atomic absorption spectrophotometer, pH- meter, potentiometer, turbidimeter, electrochemical methods, separation of mixtures of metal ions by ion exchange chromatography.

II. Synthesis and thermal analysis of group II metal oxalate hydrates.

#### **Text and Reference Books**

**Reference Books:** 

1. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.

# **Course Outcomes:**

| CO1 | Describe the alloys and inorganic substances by various chemical |
|-----|------------------------------------------------------------------|
|     | methods.                                                         |
| CO2 | Understand the synthesis and thermal analysis of group II metal  |
|     | oxalate hydrates.                                                |
| CO3 | Explain the instrumental methods of analysis utilising lame pho- |
|     | tometer.                                                         |
| CO4 | Develop the atomic absorption spectrophotometer.                 |
| CO5 | potentiometer, turbidimeter, electrochemical methods.            |
| CO6 | Illustrate the separation of mixtures of metal ions by ion ex-   |
|     | change chromatography.                                           |



| MCH452: Inorganic Chemistry Project & evaluation |                              |
|--------------------------------------------------|------------------------------|
| Teaching Scheme                                  | <b>Examination Scheme</b>    |
| Lectures: 3 hrs/Week                             | Class Test -12 Marks         |
|                                                  | Teachers Assessment - 6Marks |
|                                                  | Attendance – 12 Marks        |
| Credits: 2                                       | End Semester Exam – 70 marks |

#### 

Prerequisite: Concept of understand inorganic chemistry research problems and solutions.

# **Course Objectives:**

- 1. To know about research and development in the field of chemical science.
- 2. To understand the problems and find the solutions.
- 3. To learn the advanced materials for industries requirements.

### **Course Outcomes:**

| CO1 | Describe the mechanism of chemical reactions for completed research project.       |
|-----|------------------------------------------------------------------------------------|
| CO2 | Understand the problem and solutions.                                              |
| CO3 | Explain the importance of the research project.                                    |
| CO4 | Develop the new model and mechanism for the chemical reaction of research project. |
| CO5 | Explain the importance materials for chemical science.                             |
| CO6 | Illustrate the experimental procedure of chemical processes.                       |



# **ORGANIC CHEMISTRY SPECIALIZATION** MCH4022: Organic synthesis

| Teaching Scheme      | Examination Scheme           |
|----------------------|------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |
|                      | Attendance – 12 Marks        |
| Credits: 4           | End Semester Exam – 70 marks |
|                      |                              |

**Prerequisite:** Concept of philosophy of organic synthesis and supramolecular chemistry and carbocyclic rings.

# **Course Objectives:**

- 1. To know about chemoselectivity.
- 2. To understand the tandem reactions.
- 3. To learn the regioselectivity.
- 4. To learn the non-covalent synthesis.
- 5. To know the tropones. Tropolone.
- 6. To understand the stereoselectivity.

# **Detailed Syllabus**

### **Unit-1: Advanced Organic Synthesis**

**Philosophy of organic synthesis:** Disconnection approach, one group and two group disconnections, reversal of polarity, chemoselectivity, one group C-C disconnection, two group C-C disconnections, 1,3-difunctional and 1,5-difunctiona compounds. Tandem reactions, Domino reactions and multi-component reactions.

Unit-2: Asymmetric synthesis: Development of methodologies for asymmetric synthesis, regioselectivity, stereoselectivity, diastereoselectivity and stereospecificity.

Unit-3: Supramolecular chemistry and carbocyclic rings

Principles of molecular associations and organizations: Non-covalent synthesis, Self assembly and self organization, Supramolecular reactivity and catalysis, Molecular devices.

Unit-4: Chemistry of non-benzenoid aromatics: Tropones. tropolones, azulenes. mctallocenes and annulenes. Bridged rings, caged molecules and adamantane.

#### **Text and Reference Books**

#### **Reference Books:**

- Warren, S. Organic Synthesis: The Disconnection Approach John Wiley & Sons (1984).
  Lehn, J-M, Supramolecular Chemistry: Concepts. & Perspec-tives. A Personal Account Vch Verlagsgesellschaft Mbh (1995).
  Viigtle, F. Supramolecular Chemistry: An Introduction John Wiley & Sons (1993).



| CO1 | Describe the methodologies for asymmetric synthesis.           |  |
|-----|----------------------------------------------------------------|--|
| CO2 | Understand the reversal of polarity.                           |  |
| CO3 | Explain the diastereoselectivity and stereospecificity.        |  |
| CO4 | Develop the supramolecular reactivity and catalysis, molecular |  |
|     | devices.                                                       |  |
| CO5 | Calculate the bridged rings.                                   |  |
| CO6 | Illustrate the caged molecules and adamantane.                 |  |



| Teaching Scheme      | Examination Scheme           |
|----------------------|------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |
|                      | Attendance – 12 Marks        |
| Credits: 4           | End Semester Exam – 70 marks |

# MCH4023: Biomolecules

#### **Prerequisite: -**

Concept of protein and alkaloids and polyphenols.

# **Course Objectives:**

- 1. To know about squalene to lanosterol.
- 2. To understand the cholesterol, arternisinin.
- 3. To learn the methyl transferases, amino acid decarboxylases.
- 4. To learn the peptide alkaloids with examples.
- 5. To know the solid phase synthesis, combinatorial synthesis of peptide.
- 6. To understand the oxidative phenol coupling of selected alkaloids.

# **Detailed Syllabus**

#### Unit-1: Proteins

Peptides and proteins: Classification of naturally occurring peptides, depsipeptide and peptide alkaloids with examples, Sequence determination, chemical, enzymatic and mass spectral methods, Modern methods of peptide synthesis with protection and deprotection. Solid phase synthesis, combinatorial synthesis of peptide.

Unit-2: Carbohydrates: Types of naturally occurring sugars, deoxy sugars, amino sugars, branched chain sugars, sugar methyl ethers and acid derivatives of sugars, polysaccharide.

**Unit-3: Terpenes and steroids:** Classification and biosynthesis of mono- sesqui-. di- and triterpenoids and steroids. Acetyl CoA, Mevalonic acid, acetoacetyl CoA, squalene to lanosterol, Cholesterol to estradiol, diosgenin and its utility in hormone synthesis. General chemistry of the following compounds- Cholesterol, Arternisinin, Gibbereline A3, Azadirachtin.

Unit-4: Alkaloids and Polyphenols: Isolation and structure elucidation of alkaloids, Biosynthesis and biogenesis of alkaloid using thiokinase. Mixed function oxygenases, methyl transferases, amino acid decarboxylases, oxidative phenol coupling of selected alkaloids.

### **Text and Reference Books**

### **Reference Books:**

1. Bodansky, M. Peptide Chemistry: A Practical Textbook Springer-Verlag (1988).



- 2. Dugas, H. & Penney, C. Bioorganic Chemistry: A Chemical Approach to Enzyme Action Springer-Verlag (1989).
- 3. Finar, I. L. & Finar, A. L. Organic Chemistry Vol. 2, Addison-Wesley (1998).
- 4. Finar, I. L. Organic Chemistry Vol.1, Longman (1998).
- 5. Sinden, R. P. DNA Structure and Function Academic Press (1994).

#### **Course Outcomes:**

| CO1 | Describe the acetyl CoA, mevalonic acid, acetoacetyl CoA.             |
|-----|-----------------------------------------------------------------------|
| CO2 | Understand the Arternisinin, Gibbereline A3, Azadirachtin.            |
| CO3 | Explain the biosynthesis and biogenesis of alkaloid using thiokinase. |
| CO4 | Develop the mixed function oxygenases.                                |
| CO5 | Calculate the branched chain sugars.                                  |
| CO6 | Illustrate the sugar methyl ethers and acid derivatives of            |
|     | sugars, polysaccharide.                                               |



| WICHH024. WIChamshis of Organic Reactions |                              |
|-------------------------------------------|------------------------------|
| Teaching Scheme                           | <b>Examination Scheme</b>    |
| Lectures: 3 hrs/Week                      | Class Test -12 Marks         |
| Tutorials: 1 hr/Week                      | Teachers Assessment - 6Marks |
|                                           | Attendance – 12 Marks        |
| Credits: 4                                | End Semester Exam – 70 marks |

### MCH4024: Mechanisms of Organic Reactions

Prerequisite: Concept of chemical kinetics to decipher reaction mechanisms and diagnostic tools.

# **Course Objectives:**

- 1. To know about types of polar reactions.
- 2. To understand the deriving the rate laws.
- 3. To learn the linear Free Energy relationships.
- 4. To learn the trapping of Intermediates.
- 5. To know the curtin-Hammett control.
- 6. To understand the deviation from Linear energy relationships.

# **Detailed Syllabus**

#### **Unit-1: Introduction to Reaction Mechanisms**

Writing reaction mechanisms: Arrow pushing; Types of polar reactions; Radical reactions; Reaction coordinate diagram; The Hammond Postulates; The Kinetic vs Thermodynamic Control; Curtin-Hammett control.

#### **Unit-2: Chemical Kinetics to Decipher Reaction Mechanisms**

An introduction to reaction kinetics; Deriving the rate laws; Distinguishing reaction mechanism using rate laws; Methods to monitor a reaction.

#### **Unit-3: Diagnostic Tools**

The Hammett Equation; Linear Free Energy relationships (LFER); Hammett Plots for electronic effects; Scales used in Hammett Plots; Deviation from Linear energy relationships; Solvents effects; Kinetic isotope effect; Primary kinetic isotope effect; Secondary kinetic isotope effect; Isotope labeling; Trapping of Intermediates.

#### Unit-4: Catalysis

Enzyme catalysis; Electrophilic catalysis; Other types of catalysis.

### **Text and Reference Books**

#### **Reference Books:**

1. Modern Physical Organic Chemistry by Dennis A. Dougherty and Eric V. Anslyn.



| CO1 | Describe the reaction mechanisms: arrow pushing.                          |
|-----|---------------------------------------------------------------------------|
| CO2 | Understand the; radical reactions; reaction coordinate diagram.           |
| CO3 | Explain the methods to monitor a reaction.                                |
| CO4 | Develop the primary kinetic isotope effect; Secondary kinetic isotope ef- |
|     | fect; Isotope labeling; Trapping of Intermediates.                        |
| CO5 | Describe the electrophilic catalysis; Other types of catalysis.           |
| CO6 | Illustrate the enzyme catalysis.                                          |



| Teaching Scheme      | Examination Scheme           |
|----------------------|------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |
|                      | Attendance – 12 Marks        |
| Credits: 4           | End Semester Exam – 70 marks |
|                      |                              |

# MCH4025: Medicinal Chemistry

Prerequisite: Concept of Medicinal Chemistry and Bioactive Compounds.

# **Course Objectives:**

- 1. To know about general mechanism of drug action on lipids, carbohydrates.
- 2. To understand the receptor structure and sites.
- 3. To learn the anti-analgesics.
- 4. To learn the chemistry of Vitamins A.
- 5. To know the soluble and fat.
- 6. To understand the soluble hormones.

# **Detailed Syllabus**

#### **Unit-1: Medicinal Chemistry**

Introduction to the history of medicinal chemistry. General mechanism of drug action on lipids, carbohydrates, proteins and nucleic acids, Drug metabolism and inactivation. Receptor structure and sites. Drug discovery, development, design and delivery systems. General introduction to antibiotics, Mechanism of action of lactam antibiotics, nonlactam antibiotics and quinolones. Anti-histamines, anti-inflammatory, anti-analgesics, anticancer antimalomial, anti AIDS. Drugs resistance, gene therapy and anti-hypertensive drugs.

#### **Unit-2: Bioactive Compounds**

**Vitamins:** Classification, occurrence, chemistry of Vitamins A, C and E, structure elucidation and synthesis, deficiency syndromes, etc.

**Unit-3: Pyrethroids:** Introduction; structure elucidation and synthesis of pyrethroids, namely pyrethrins, cinerins and jasmoline; Synthetic pyrethroids: Structure—activity relationships; synthesis of various synthetic pyrethroids.

**Unit-4: Hormones:** General study of hormones including classification, mechanism of action of anti –vacter fatility agents. Soluble and fat soluble hormones, secondary messengers.



#### **Text and Reference Books**

#### **Reference Books:**

- Finar, I.L. & Finar, A. L. Organic Cheinisto- Vol. 2, Addison-Wesley (1998).
  Finar, I. L. Organic Cheinisuy Vol., Longman (1998).
  Grine auz, A. Introduction to Medicinal Chemistry: How Drugs Act and Why? John Wiley & Sons (1997).
  Patrick, G. L. Introduction to Medicinal Chemistry Oxford University Press (2001).

# **Course Outcomes:**

| CO1 | Describe the nonlactam antibiotics and quinolones.                  |
|-----|---------------------------------------------------------------------|
| CO2 | Understand the anti-histamines, anti-inflammatory, anti-analgesics. |
| CO3 | Explain the mechanism of action of anti –vacter fatility agents.    |
| CO4 | Develop the secondary messengers.                                   |
| CO5 | Synthetic pyrethroids.                                              |
| CO6 | Illustrate the synthesis of various synthetic pyrethroids.          |



| MCH455: Organic Chemistry Practical-1v |                               |
|----------------------------------------|-------------------------------|
| Teaching Scheme                        | <b>Examination Scheme</b>     |
| Lectures: 3 hrs/Week                   | Class Test -8 Marks           |
|                                        | Teachers Assessment – 4 Marks |
|                                        | Attendance – 8 Marks          |
| Credits: 2                             | End Semester Exam – 30 marks  |

# MCH453: Organic Chemistry Practical-IV

#### **Prerequisite: -**

Concept of quantitative analysis and advanced organic synthesis.

### **Course Objectives:**

- 1. To know about estimation of glucose.
- 2. To understand the estimation of amino acids.
- 3. To learn the estimation of nitro group.

# **Detailed Syllabus**

I. Quantitative analysis

i.Estimation of glucose by chemical methods ii.Estimation of amino acids by chemical methods

iii.Estimation of nitro zroup in organic compounds

iv. Estimation of iodine by Vij's solution

v.Estimation of carbohydrates, amino acids, proteins and caffeine by UV/VIS spectra

vi. Estimation of a given mixture by NMR spectra

II Advanced organic synthesis

(I) Multistage synthesis including photochemical and enzymatic methods (some examples are given below)

Benzophenone→benzopinacol→ benzopinacolone

Benzoin  $\rightarrow$  benzil  $\rightarrow$  benzilic acid

Cyclohexanone  $\rightarrow$  cyclohexanone oxime  $\rightarrow$  caprolactone (ii) Enzymatic reaction: reduction of ethyl acetoacetate with Baker's yeast; PPL catalysed deacetylation of 2,4-diacetoxyacetophenone.

(iii) Use of ultrasound and microwaves in organic synthesis.(iv) Application of phase transfer catalysis in organic synthesis.

### **Text and Reference Books**

#### **Reference Books:**

1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).



| CO1 | Describe the estimation of iodine by Vij's solution.                  |
|-----|-----------------------------------------------------------------------|
| CO2 | Understand the estimation of carbohydrates, amino acids, proteins and |
|     | caffeine by UV/VIS spectra.                                           |
| CO3 | Explain the estimation of a given mixture by NMR spectra.             |
| CO4 | Develop the Multistage synthesis including photochemical and enzy-    |
|     | matic methods.                                                        |
| CO5 | Calculate the enzymatic reaction: reduction of ethyl acetoace-        |
|     | tate.                                                                 |
| CO6 | Illustrate the use of ultrasound and microwaves in organic synthesis. |

# MCH454: Organic Chemistry Project & evaluation

| Teaching Scheme      | Examination Scheme           |
|----------------------|------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |
|                      | Teachers Assessment - 6Marks |
|                      | Attendance – 12 Marks        |
| Credits: 2           | End Semester Exam – 70 marks |

**Prerequisite:**Concept of understand organic chemistry research problems and solutions.

#### **Course Objectives:**

- 1. To know about research and development in the field of chemical science.
- 2. To understand the problems and find the solutions.
- 3. To learn the advanced materials for industries requirements.

#### **Course Outcomes:**

| CO1 | Describe the mechanism of chemical reactions for completed research project.       |
|-----|------------------------------------------------------------------------------------|
| CO2 | Understand the problem and solutions.                                              |
| CO3 | Explain the importance of the research project.                                    |
| CO4 | Develop the new model and mechanism for the chemical reaction of research project. |
| CO5 | Explain the importance materials for chemical science.                             |
| CO6 | Illustrate the experimental procedure of chemical processes.                       |



# PHYSICAL CHEMISTRY SPECIALIZATION MCH4032: Advanced Electrochemistry

| <b>Teaching Scheme</b> | Examination Scheme           |
|------------------------|------------------------------|
| Lectures: 3 hrs/Week   | Class Test -12 Marks         |
| Tutorials: 1 hr/Week   | Teachers Assessment - 6Marks |
|                        | Attendance – 12 Marks        |
| Credits: 4             | End Semester Exam – 70 marks |
|                        |                              |

Prerequisite: Concept of Electrochemical methods and Relaxation Methods.

# **Course Objectives:**

- 1. To know about exchange current density.
- 2. To understand the Tafel plot, Multistep electrode reactions.
- 3. To learn the charge transfer at electrode-solution interfaces.
- 4. To learn the electrochemical instrumentations.
- 5. To know the thermodynamics of the double layer.
- 6. To understand the electrocatalysis.

# **Detailed Syllabus**

Unit-1: Relaxation Methods-Theory and Techniques

Electrode kinetics: Overpotentials. Exchange current density, Derivation of ButlerVolmer equation and its implications, Tafel plot, Multistep electrode reactions, Determination of multistep electrode reactions, Mass transfer by diffusion.

**Unit-2: Quantum aspects:** Charge transfer at electrode-solution interfaces, Quantization of charge transfer, Tunnelling.

Unit-3: Electrochemical methods: Controlled potential and current techniques, Hydrodynamic techniques, Electrochemical instrumentations, Scanning probe techniques.

Unit-4: Adsorption and Electric Double Layer: Thermodynamics of the double layer, Electrocapillary phenomena; Adsorption—Ionicand oreanic molecules\_ Adsorption isotherms-Langmuir, Friamkin, temkin• Experimental evaluation of surface excesses and electrical parameters, Structure of electrified interfaces - Gouy-Chapman, Stern.

Unit-5: Bioelectrochemistry

Membrane potentials, Nernst-Planck equation, Hodgkin-Huxley equations, Core Conductor model, Electrocardiography

#### Unit-6: Applied Electrochemistry

**Corrosion:** Introduction to corrosion, forms of corrosion, Corrosion monitoring and prevention methods Conversion and storage of electrochemical energy: Fuel cells and batteries. Electrocatalysis: Influence of various parameters, fly.drogen electrode



#### **Text and Reference Books**

#### **Reference Books:**

- 1. Bard, A. J. Faulkner, L. R. Electrochemical Methods: Fundamen-tals and Applications, 2nd Ed., John Wiley & Sons: New York, 2002.
- 2002.
  Bockris, J.O' M. & Reddy, A. K. N. Modern Electrochemistry 1: Ionics 2nd Ed., Springer (1998).
  Bockris, J.O' M. & Rcddv. A. K. N. Modern Electrochemistry2B: Electrodics in Chemistry Engineering, Biology and Environmental Science 2nd Ed. Springer (2001).
  Brett, C. M. A. & Brett, A. M. 0. Electrochemistry Oxford University Press (1993).
  Koryta, J., Dvorak, J. & Kavan, L. Principles of Electrochemistry John Wiley & Sons: NY (1993).

# **Course Outcomes:**

| CO1 | Describe the charge transfer at electrode-solution interfaces,           |
|-----|--------------------------------------------------------------------------|
| CO2 | Understand the quantization of charge transfer, Tunnelling.              |
| CO3 | Explain the conversion and storage of electrochemical energy: Fuel cells |
|     | and batteries.                                                           |
| CO4 | Develop the influence of various parameters.                             |
| CO5 | Calculate the conductor model, Electrocardiography.                      |
| CO6 | Illustrate the Nernst-Planck equation.                                   |



| MCH4033: Photo & Radio Chemistry |                              |
|----------------------------------|------------------------------|
| <b>Teaching Scheme</b>           | <b>Examination Scheme</b>    |
| Lectures: 3 hrs/Week             | Class Test -12 Marks         |
| Tutorials: 1 hr/Week             | Teachers Assessment - 6Marks |
|                                  | Attendance – 12 Marks        |
| Credits: 4                       | End Semester Exam – 70 marks |

Prerequisite: Concept of Molecular photochemistry and Radiation dosimetry.

# **Course Objectives:**

- 1. To know about transitions between states.
- 2. To understand the potential energy surface.
- 3. To learn the classical model of radiative transitions.
- 4. To learn the energy transfer.
- 5. To know the diffusion-controlled quenching.
- 6. To understand the various mechanisms of their formation and energy transfer processes).

# **Detailed Syllabus**

Unit-1: Molecular photochemistry: An overview: Transitions between states (chemical, classical and quantum dynamics, vibronic states). Potential energy surfaces; transitions between potential energy surfaces, The Franck-Condon Principle and radiative transitions. A classical model of radiative transitions.

Unit-2: Photophysical radiationless transitions: Wave mechanical interpretation of radiationless transitions between state factors that influence the rate of vibrational relaxation. Energy transfer: Theory of radiationless energy transfer, energy transfer by electron exchange: An overlap or collision mechanism. The role of energetics in energy transfer mechanism. Diffusion controlled quenching.

# **Unit-3: Radiation Chemistry**

An overview, G-value. The mechanism of interaction of high energy radiation with matter, Photoelectric effect, Compton effect, Pair production, total absorption coefficient, excitation and ionization, Stopping power and linear energy transfer.

Unit-4: Radiation dosimetry: Radiation dose and its measurement, standard free air chamber method, chemical dosimeter (Frick's Dosimeter). Short lived intermediates (ions, excited molecules, free radicals: Various mechanisms of



their formation and energy transfer processes).

#### **Text and Reference Books**

#### **Reference Books:**

Turro, N. J. Modern Molecular Photochemisty Univ, Science Books (1991). Gilbert, A. & Baggot, .1. Essentials of Molecular Photochemistri' Blackwell Sci-entiic (1990) Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 81i, Ed., Oxford University Press (2006). McQuarrie, D. A. & Simon, J. D. Physical Chemisty: A Molecular Approach 3rd

Ed., Univ. Science Books (2001).

### **Course Outcomes:**

| CO1 | Describe the transitions between states (chemical, classical and quantum |
|-----|--------------------------------------------------------------------------|
|     | dynamics, vibronic states).                                              |
| CO2 | Understand the transitions between potential energy surfaces.            |
| CO3 | Explain the theory of radiation less energy transfer, energy transfer by |
|     | electron exchange.                                                       |
| CO4 | Develop the the mechanism of interaction of high energy radiation        |
|     | with matter, Photoelectric effect.                                       |
| CO5 | Calculate the stopping power and linear energy transfer.                 |
| CO6 | Illustrate the various mechanisms of their formation and energy trans-   |
|     | fer processes).                                                          |



| Teaching Scheme      | <b>Examination Scheme</b>    |
|----------------------|------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |
|                      | Attendance – 12 Marks        |
| Credits: 4           | End Semester Exam – 70 marks |

# MCH4034: Biophysical Chemistry

**Prerequisite:**Concept of fundamentals of biological macromolecules and optical methods and applications.

# **Course Objectives:**

- 1. To know about: chemical bonds in biological systems.
- 2. To understand the properties and classification of amino acids.
- 3. To learn the general principles.
- 4. To learn the zonal sedimentation.
- 5. To know the capillary electrophoresis.
- 6. To understand the fluorescence spectroscopy.

# **Detailed Syllabus**

Unit-1: Fundamentals of biological macromolecules: Chemical bonds in biological systems: Properties of water; Thermodynamic principles in biological systems; Properties and classification of amino acids; Structures of nucleic acids. Protein structure and function. Properties of nucleosides and nucleotides; composition of nucleic acids. Methods for the separation of biomolecules: General principles, including Chromatography: Sedimentation,Moving Boundary Sedimentation, Zonal Sedimentation, Electrophoresis, Isoelectric focusing, Capillary electrophoresis, MALDI/TOF.

Unit-2: Structural determinations: Physical methods. Ultracentrifugation and other hydrodynamic techniques; Light scattering, fundamental concepts, scattering from a number of small particles: Rayleigh scattering, scattering from particles that are not small compared to the wavelength of radiation; Dynamic light scattering; Low angle X-Ray scattering; Neutron scattering; Raman scattering

Unit-3: Optical methods and applications: Optical techniques in biological systems: Absorption spectroscopy, Fluorescence spectroscopy, Linear and Circular Dichroism, Single and multidimensional NMR spectroscopy.



### **Text and Reference Books**

#### **Reference Books:**

- 1. Cantor, C. R. & Schimmel Biophysical Chemistry Vols. 1-3, W. H. Freeman (1080)
- Lehninger, A. L\_, Nelson, D. L. & Cox, M. M. Lehninger Principles of Biochemisry 4e, Ed., W. H. Freeman (2004).

# **Course Outcomes:**

| CO1 | Describe the physical methods. Ultracentrifugation and other hydro- |
|-----|---------------------------------------------------------------------|
|     | dynamic techniques.                                                 |
| CO2 | Understand the light scattering, fundamental concepts, scattering   |
|     | from a number of small particles.                                   |
| CO3 | Explain the Rayleigh scattering.                                    |
| CO4 | Develop the single and multidimensional NMR spectroscopy.           |
| CO5 | Calculate the neutron scattering; Raman scattering.                 |
| CO6 | Illustrate the Linear and Circular Dichroism.                       |



| WCH4055. Crystanography |                              |
|-------------------------|------------------------------|
| Teaching Scheme         | Examination Scheme           |
| Lectures: 3 hrs/Week    | Class Test -12 Marks         |
| Tutorials: 1 hr/Week    | Teachers Assessment - 6Marks |
|                         | Attendance – 12 Marks        |
| Credits: 4              | End Semester Exam – 70 marks |
|                         |                              |

# MCH4035: Crystallography

**Prerequisite:** Concept of crystal structures and basic symmetry.

# **Course Objectives:**

- 1. To know about description of a crystal structure in terms of atom positions.
- 2. To understand the relation of the crystal symmetry.
- 3. To learn the interaction of radiation with condensed matter.
- 4. To learn the Bragg condition.
- 5. To know the structure factor and its relation to intensity.
- 6. To understand the Fourier synthesis.

# **Detailed Syllabus**

#### Unit-1: Crystal structures and basic symmetry

Overview: Description of a crystal structure in terms of atom positions, unit cells, and crystal symmetry; Relation of the crystal symmetry to the symmetry observed in a diffraction experiment for primitive, orthorhombic, tetragonal. Scattering and Diffraction Theory

**Unit-2: X-Ray Diffraction:** Interaction of radiation with condensed matter and how this can be used in generalized crystallography. Bragg condition, Miller indices, Laue method, Bragg method, Debye-Scherrer method of X-ray structural analysis of crystals, index reflections, identification of unit cells from systematic absences in diffraction pattern. Structure of simple lattices and X-ray intensities, Structure factor and its relation to intensity and electron density, Fourier synthesis.

Unit-3: Crystal defects and non-stoichiometry: Perfect and imperfect crystals, intrinsic and extrinsic defects- point defects, line and plane defects, vacancies- Schottky defects and Frenkel defects. Thermodynamics of Schottky and Frenkel defect formation, colour centres, non-stoichiometry and defects.

# Unit-4: Protein Crystallography

Basics of modern protein crystallography using Web-based material; different levels of structure exhibited by proteins; instrumentation, steps, and methods used in protein crystallography with appropriate case studies; concept of non-crystallographic symmetry to protein crystallography, Ramachandran diagram.

Unit-5: Electronic properties and band theory: Metals, insulators and semiconductors, electronic structure of solids- band theoy, band struc-



ture of metals, insulators and semiconductors, intrinsic and extrinsic semiconductors, doping semiconductors, p-n junctions, super conductors. Magnetic properties- Classification of materials: Quantum theory of paramagnetics cooperative phenomena - magnetic domains. Hysteresis.

Unit-6: Electron diffraction: Scattering intensity versus scattering angle, Wierl equation, measurement technique, elucidation of structure of simple gas phase molecules. Low energy electron diffraction and structure of surfaces.

**Unit-7:** Neutron dffraction: Scattering of neutrons by solids and liquids, magnetic scattering, measurement techniques. Elucidation of structure of magnetically ordered unit cells.

#### **Text and Reference Books**

#### **Reference Books:**

- 1. Moore, E. & Smart, L. Solid State Chemistry: An Introduction 2nd
  - Ed. Chapman & Hall (1996).
- 2. Rhodes, G. Crystallography Made Crystal Clear: A Guide for Users of illacromolecular Models 3rd Ed. Elsevier (2006).

3. Massa, W. Crystal Structure Determination 2nd Ed. Springer (2004).

# **Course Outcomes:**

| CO1 | Describe the perfect and imperfect crystals, intrinsic and extrin-   |
|-----|----------------------------------------------------------------------|
|     | sic defects- point defects.                                          |
| CO2 | Understand the different levels of structure exhibited by proteins.  |
| CO3 | Explain the concept of non-crystallographic symmetry to protein      |
|     | crystallography, Ramachandran diagram.                               |
| CO4 | Develop the intrinsic and extrinsic semiconductors.                  |
| CO5 | Calculate the Wierl equation, measurement technique.                 |
| CO6 | Illustrate the low energy electron diffraction and structure of sur- |
|     | faces.                                                               |



| MCH455: Physical Chemistry Practical-IV |                               |
|-----------------------------------------|-------------------------------|
| <b>Teaching Scheme</b>                  | <b>Examination Scheme</b>     |
| Lectures: 3 hrs/Week                    | Class Test -8 Marks           |
|                                         | Teachers Assessment – 4 Marks |
|                                         | Attendance – 8 Marks          |
| Credits: 2                              | End Semester Exam – 30 marks  |

# 

# **Prerequisite:**Develop the practical skills.

### **Course Objectives:**

- 1. To know about determination of surface tension by differential capillary method.
- 2. To understand the determination of g-value by ESR method.
- 3. To learn the spectrophotometric study on H-bonded complexation.

### **Detailed Syllabus**

Determination of surface tension by differential capillary method.

Determination of molecular weight of a macromolecule by viscometry.

Determination of molecular weight by Victor Meyer's method.

Cryoscopy and determination of degree of dissociation.

Determination of g-value by ESR method.

Analysis of a UV spectrum and calculation of oscillator strength and transition moment.

Spectrophotometric study on H-bonded complexation.

Determination of ionization constant of a weak indicator acid.

### **Text and Reference Books**

#### **Reference Books:**

1. Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co.: New Delhi (2011)

### **Course Outcomes:**

| CO1 | Describe the analysis of a UV spectrum and calculation of oscillator strength and |
|-----|-----------------------------------------------------------------------------------|
|     | transition moment.                                                                |
| CO2 | Understand the determination of ionization constant of a weak indicator acid.     |
| CO3 | Explain the determination of molecular weight of a macromolecule by viscometry.   |
| CO4 | Develop the determination of molecular weight by Victor Meyer's method.           |
| CO5 | Calculate the determination of g-value by ESR method.                             |
| CO6 | Illustrate the spectrophotometric study on H-bonded complexation.                 |



| MCH456: Physical Chemistry Project & evaluation |                              |
|-------------------------------------------------|------------------------------|
| <b>Teaching Scheme</b>                          | <b>Examination Scheme</b>    |
| Lectures: 3 hrs/Week                            | Class Test -12 Marks         |
|                                                 | Teachers Assessment - 6Marks |
|                                                 | Attendance – 12 Marks        |
| Credits: 2                                      | End Semester Exam – 70 marks |

Prerequisite: Concept of understand physical chemistry research problems and solutions.

# **Course Objectives:**

- 1. To know about research and development in the field of chemical science.
- 2. To understand the problems and find the solutions.
- 3. To learn the advanced materials for industries requirements.

# **Course Outcomes:**

| CO1 | Describe the mechanism of chemical reactions for completed research project.       |
|-----|------------------------------------------------------------------------------------|
| CO2 | Understand the problem and solutions.                                              |
| CO3 | Explain the importance of the research project.                                    |
| CO4 | Develop the new model and mechanism for the chemical reaction of research project. |
| CO5 | Explain the importance materials for chemical science.                             |
| CO6 | Illustrate the experimental procedure of chemical processes.                       |



# ANALYTICAL CHEMISTRY SPECIALIZATION

# MCH4042: Separation Techniques

| Teaching Scheme      | <b>Examination Scheme</b>    |
|----------------------|------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |
|                      | Attendance – 12 Marks        |
| Credits: 4           | End Semester Exam – 70 marks |

**Prerequisite:** Concept of separation techniques based on phase equilibria and separation techniques based on rate processes.

# **Course Objectives:**

- 1. To know about principles of analytical separation: Plate theory, rate theory.
- 2. To understand the craig concept of counter current distribution.
- 3. To learn the chromatography: Gas chromatography.
- 4. To learn the size exclusion chromatography.
- 5. To know the field separation methods: Electrophoresis.
- 6. To understand the Electrophoresis, Ultracentrifugation.

# **Detailed Syllabus**

Unit-1: Separation Techniques Based on Phase Equilibria: Principles of analytical separation: Plate theory, rate theory, Craig concept of counter current distribution, process optimization, Retention analysis; Resolution (Fundamental equation). Distillation: Fractional distillation, Molecular distillation. Chromatography: Gas chromatography, Liquid chromatography (including high performance chromatography), Ion-exchange chromatography, Ion chromatography, Size exclusion chromatography, Planar chromatography (PC, TLC, HPTLC), Reverse phase chromatography & Bonded phase chromatography (BPC), Super critical fluid chromatography (SFC). Solvent Extraction: Liquid-Liquid and super critical fluid extraction, Quantitative treatment of various solvent, extraction equilibria. Sublimation: Normal and vacuum sublimation. Crystallisation: Zone refining and Fractional.

**Unit-2: Separation Techniques Based on Rate Processes:** 

(a) Barrier-separation methods: Membrane separation- Ultrafiltration, dialysis, electrodialysis, electro-osmosis, reverse osmosis.

(b) Field separation methods: Electrophoresis, Ultracentrifugation.



#### **Text and Reference Books**

#### **Reference Books:**

- **1.** G.H. and H. Freiser, *Solvent Extraction in Analytical Chemistry*, 1<sup>st</sup> Edition (1958), John Wiley, New York.
- B.L. Karger, L.R. Snyder and C. Howarth, An Introduction to Separation Science, 2<sup>nd</sup> Edition (1973), John Wiley, New York.
- 3. E.W. Berg, *Chemical Methods of Separation*, 1<sup>st</sup> Edition (1963), McGraw Hill, New York.
- 4. D.G. Peters, J.M. Hayes and C.M. Hieftj, Chemical Separation and Measurements,
  2<sup>nd</sup> Edition (1974), Saunders Holt, London.
- J.D. Seader and E.J. Henley, Separation Process Principles, 1<sup>st</sup> Edition (1998), John Wiley & Sons. Inc., New York. Edition(1998), JohnWiley&Sons.Inc., New York.

# **Course Outcomes:**

| CO1 | Describe the reverse phase chromatography.                                                                                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Understand the Barrier-separation methods: Membrane separation- Ultrafil-<br>tration, dialysis.                                  |
| CO3 | Explain the electrodialysis, electro-osmosis, reverse osmosis.                                                                   |
| CO4 | Develop the Super critical fluid chromatography (SFC). Solvent Extraction:<br>Liquid-Liquid and super critical fluid extraction. |
| CO5 | Explain the quantitative treatment of various solvent.                                                                           |
| CO6 | Illustrate the electrodialysis, electro-osmosis, reverse osmosis.                                                                |



| Teaching Scheme      | Examination Scheme           |
|----------------------|------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |
|                      | Attendance – 12 Marks        |
| Credits: 4           | End Semester Exam – 70 marks |

# MCH4043: Polarography

Prerequisite: Concept of Polarography and modern polarography.

### **Course Objectives:**

- 1. To know about electrode Processes.
- 2. To understand the diffusion current.
- 3. To learn the kinetic adsorption and capacitive currents.
- 4. To learn the necessity and development of new voltammetric techniques.
- 5. To know the differential and derivative voltammetry.
- 6. To understand the electro-spot testing.

# **Detailed Syllabus**

**Unit-1: General Introduction**: Overviews of Electrode Processes, Electrocapillary curve and electrocapillary maximum potential, Exchange current, Polarization and overvoltage, Reference electrodes. Mercury electrodes (DME, SME, HMDE), Rotating platinum electrode. Three-electrode system.

**t-2: Polarography:** Origin of polarography, Interpretation of a polarographic curve. Instrumentation. Limiting current, residual and charging current, diffusion current, migration current. Supporting electrolytes. Effect of supporting electrolyte on the limiting current. Diffusion coefficient and its evaluation. Ilkovic equation, its derivation and applications. Estimation of n-value(s). Theory and equations of different current- potential curves. Criteria of polarographic reversibility. Quasi-reversible and irreversible processes. Half- wave potentials and their significance. Interpretation of catalytic, kinetic, adsorption and capacitive currents. Polarographic maxima and maximum suppresors. Methods of quantitative analysis: absolute, comparative, the PILOT ION and kinetic methods.

**Unit-3: Modern Polarography:** Necessity and development of new voltammetric techniques and their comparison with classical polarography. Fundamentals of sampled DC polarography (Tast), oscilliography, differential and derivative voltammetry, cyclic, pulse, alternating current and square wave polarography.

Unit-4: Related Techniques: Amperometric titration, Chronoamperometry, Chronopotenti-



ometry. Controlled- potential and constant current coulometry. Stripping analysis, Electrogravimetry, Electrography and Electro-spot testing.

#### **Text and Reference Books**

### **Reference Books:**

1.L. Meites, *Polarographic Techniques*, 2<sup>nd</sup> Edition (1965), John Wiley, New York.

2.J. Heyrovsky and K. Kuta, *Principles of Polarography*, 1<sup>St</sup> Edition (1966), Academic Press, Naw York

Press, New York.

3.D.A. Skoog, F.J. Holler and T.A. Nieman, Principles of Instrumental Analysis, 5<sup>th</sup>

Edition (1998), Saunders College Publishing, Harcourt Brace & Company, U.S.A.

4.A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applica-

*tions*, 2<sup>nd</sup> Edition (2000), Wiley, New York.

# **Course Outcomes:**

| CO1 | Describe the effect of supporting electrolyte on the limiting current.         |
|-----|--------------------------------------------------------------------------------|
| CO2 | Understand the theory and equations of different current-potential curves.     |
|     | Criteria of polarographic reversibility.                                       |
| CO3 | Explain the quasi-reversible and irreversible processes. Half- wave potentials |
|     | and their significance.                                                        |
| CO4 | Develop the comparative, the PILOT ION and kinetic methods.                    |
| CO5 | Explain the Fundamentals of sampled DC polarography (Tast), oscil-             |
|     | liography,.                                                                    |
| CO6 | Illustrate the Amperometric titration, Chronoamperometry, Chronopotentiom-     |
|     | etry.                                                                          |



| Teaching Scheme      | Examination Scheme           |
|----------------------|------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks         |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks |
|                      | Attendance – 12 Marks        |
| Credits: 4           | End Semester Exam – 70 marks |

# MCH4044: Spectroscopic Techniques

**Prerequisite:** Concept of Nuclear Magnetic Resonance Spectroscopy and Applications in analysis of special materials.

# **Course Objectives:**

- 1. To know about infrared instruments.
- 2. To understand the Raman spectroscopy, Instrumentation.
- 3. To learn the theory of nuclear magnetic resonance.
- 4. To learn the two dimensional Fourier- transform NMR.
- 5. To know the atomic force microscopy (AFM).
- 6. To understand the food additives, petrochemicals.

# **Detailed Syllabus**

**Unit-1: Infrared Spectroscopy:** Infrared instruments, typical applications of infrared spectroscopy (qualitative and quantitative).

**Unit-2: Raman Spectroscopy:** Raman spectroscopy, Instrumentation, Analytical applications of Raman spectroscopy

**Unit-3: Nuclear Magnetic Resonance Spectroscopy:** Theory of nuclear magnetic resonance, Environmental effects on NMR spectrometers, Applications of proton <sup>1</sup>HNMR, <sup>13</sup>C NMR, Two dimensional Fourier- transform NMR, Magnetic resonance imaging (MRI), Quantitative applications of NMR: Drug Analysis, Molecular Weight determination.

Unit-4: Electron Spin Resonance Spectroscopy: Theory, Instrumentation and Important analytical applications.

**Unit-5: Electron Spectroscopy:** Theory, Instrumentation and applications of Electron spectroscopy (ESCA and Auger), Scanning electron microscopy (SEM), Scanning tunnelling microscopy (STM) and Atomic force microscopy (AFM).

**Unit-7: Applications in analysis of special materials:** Analysis of dairy products, food additives, petrochemicals (including liquid and gaseous fuels), drugs and pharmaceuticals and fertilizers.



# **Text and Reference Books**

**Reference Books:** 

- D.A. Skoog, F.J. Holler and T.A. Nieman, *Principles of Instrumental Analysis*, 5<sup>th</sup> Edition (1998), Harcourt Brace & Company, Florida.
- 2. R.L. Pecsok, L. D. Shields, T. Cairns and L.C. Mc William, Modern *Methods of Chemical Analysis*, 2<sup>nd</sup> Edition (1976), John Wiley, New York.
- 3. J.M. Hollas, *Modern Spectroscopy*, 3<sup>rd</sup> Edition (1996), John Wiley, New York.
- 4. H.A. Strobel, *Chemical Instrumentation A Systematic Approach*, 2<sup>nd</sup> Edition (1973), Addison Wesley, Mass.
- 5. D.C. Garratt, *the Quantitative Analysis of Drugs*, 2<sup>nd</sup> Edition (1992), Chapman and Hall Ltd., London.
- 6. W. Horwitz (Editor), *Official Methods of Analysis*, 11<sup>th</sup> Edition (1970), Association of Official Analytical Chemists, Washington DC.

# **Course Outcomes:**

| CO1 | Describe the typical applications of infrared spectroscopy (qualitative and quanti- |
|-----|-------------------------------------------------------------------------------------|
|     | tative).                                                                            |
| CO2 | Understand the drugs and pharmaceuticals and fertilizers.                           |
| CO3 | Explain the Scanning electron microscopy (SEM).                                     |
| CO4 | Develop the instrumentation and applications of Electron spectroscopy (ESCA         |
|     | and Auger).                                                                         |
| CO5 | Calculate the molecular Weight determination.                                       |
| CO6 | Illustrate the magnetic resonance imaging (MRI), Quantitative applications of       |
|     | NMR.                                                                                |



| Teaching Scheme      | Examination Scheme                                    |
|----------------------|-------------------------------------------------------|
| Lectures: 3 hrs/Week | Class Test -12 Marks                                  |
| Tutorials: 1 hr/Week | Teachers Assessment - 6Marks<br>Attendance – 12 Marks |
| Credits: 4           | End Semester Exam – 70 marks                          |

# MCH4045: Micro Analytical Techniques

Prerequisite: Concept of Biochemical Microanalysis.

### **Course Objectives:**

- 1. To know about scope and objectives of microanalytical technique.
- 2. To understand the microanalysis of real-world Samples.
- 3. To learn the Biochemical Microanalysis.
- 4. To learn the inorganic microanalysis.
- 5. To know the inorganic microanalysis.
- 6. To understand the Microanalysis by Kinetic Methods.

# **Detailed Syllabus**

**Unit-1:** General Introduction: Scope and objectives of microanalytical technique, Difference between micro and trace analysis, Microanalytical technique based on size and amount of the sample.

**Unit-2:** Microanalysis of real-world Samples: Molecular recognition and targeted analysis using macrocyclic (crown ethers), macrobicyclic (cryptands), Supramolecular compounds (calixarenes) and polymeric materials.

**Unit-3:** Biochemical Microanalysis: Estimation of carbohydrates, amino acids and ascorbic acid in biological systems, Estimation of protein in egg albumin, Estimation of free fatty acid, Iodine value and saponification value of fats/oils, Estimation of blood cholesterol, DNA and RNA.

**Unit-4:** Inorganic microanalysis: Principle, Technique, qualitative and quantitative applications with special reference to Ring-oven technique and Ring colorimetric technique, Chemical microscopy.

**Unit-5:** Organic Microanalysis: Determination of alkoxy, acetyl, acyl, hydroxyl, carbonyl, active hydrogen, nitroso, sulfonyl, amides and ester groups, Determination of molecular weight and percentage purity of carboxylic acid, Estimation of sugars, Estimation of unsaturation.

**Unit-6:** Microanalysis by Kinetic Methods: Theoretical basis, Kinetic parameters, Kinetic methods of microanalysis: Tangent, fixed time and addition method.



#### **Text and Reference Books**

#### **Reference Books:**

- 1. P.L. Kirk, Quantitative Ultramicroanalysis, John, Wiley.
- 2. C.L. Wilson and D.L. Wilson, Comprehensive Analytical Chemistry", Vol. I (A) and I(B), Elsevier.
- 3. G.D. Christian, Analytical Chemistry, John Wiley & Sons, New York (2001).
- 4. S.M. Khopkar, Analytical Chemistry of Macrocyclic and Supramolecular Compounds, Narosa Publishing House, New Delhi (2002).
- 5. Jag Mohan, Organic Analytical Chemistry Theory and Practice, Narosa Publishing House, New Delhi (2003).

# **Course Outcomes:**

| CO1 | Describe the difference between micro and trace analysis.                           |
|-----|-------------------------------------------------------------------------------------|
| CO2 | Understand the supramolecular compounds (calixarenes) and polymeric materi-         |
|     | als.                                                                                |
| CO3 | Explain the estimation of free fatty acid, Iodine value and saponification value of |
|     | fats/oils.                                                                          |
| CO4 | Develop the ring colorimetric technique, Chemical microscopy.                       |
| CO5 | Calculate the quantitative applications with special reference to Ring-oven         |
|     | technique.                                                                          |
| CO6 | Illustrate the percentage purity of carboxylic acid, Estimation of sugars.          |



| MCH457: Analytical Chemistry Practical-II |                               |
|-------------------------------------------|-------------------------------|
| Teaching Scheme                           | Examination Scheme            |
| Lectures: 3 hrs/Week                      | Class Test -8 Marks           |
|                                           | Teachers Assessment – 4 Marks |
|                                           | Attendance – 8 Marks          |
| Credits: 2                                | End Semester Exam – 30 marks  |

MCII/57. Amalytical Chamistery Ducatical

**Prerequisite:** Develop the experimental skills.

# **Course Objectives:**

- 1. To know about determination of accuracy, precision, mean deviation.
- 2. To understand the composition of two sets of results in terms of significance.
- 3. To learn the solvent extraction: determination of Fe (III) by chloride extraction in ether.

# **Detailed Syllabus**

#### Statistical Treatment of Results

- 2. Determination of accuracy, precision, mean deviation, standard deviation, coefficient of variation, normal error curve and least square fitting of certain set of experimental data in an analysis.
- 3. Composition of two sets of results in terms of significance (Precision and accuracy) by (I) student's t-test, (ii) F-test.
- 4. Solvent Extraction: Determination of Fe (III) by chloride extraction in ether.
- 5. Complexometric and Redox Titrations
- 6. Metal-EDTA titrations using Eriochrome Black T, Xylenol orange and PAN indicators (only back titration or substitution titration methods).
- 7. Estimation of the purity of oxalic acid employing standard Ce (IV) solution.
- 8. Spectrophotometric Analysis
- 9. Spectrophotometric determination (in ppm) of Fe (II) or Fe(III) using 1,10 Phenanthroline (or thiocyanate) as colorimetric reagent.
- 10. Colorimetric determination of chromium (VI) (in ppm) using 1,5 diphenyl carbazide as a reagent for colour development.
- 11. Quantitative analysis of APC tablet by NMR or IR spectroscopy
- 12. Water Analysis: Analysis of water samples for the following parameters
  - BOD, (ii) COD, (iii) Dissolved oxygen, (iv) total phosphorous, (v) sulfur as (I) SO2, (vi) total hardness and chloride, (vii) total dissolved solids.
- 13. To prepare a buffer solution of known ionic strength and to find its maximum buffer capacity.

#### **Text and Reference Books**

### **Reference Books:**

- 1. Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. Experiments in Physical Chemistry 8th Ed.; McGraw-Hill: New York (2003).
- 2. Halpern, A. M. & McBane, G. C. Experimental Physical Chemistry 3rd Ed.; W.H. Freeman & Co.: New York (2003).



# **Course Outcomes:**

| CO1 | Describe the colorimetric determination of chromium (VI) (in ppm) using 1,5 diphenyl carbazide as a reagent for colour development.                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Understand the Estimation of the purity of oxalic acid employing standard Ce (IV) solution.                                                                                    |
| CO3 | Explain the composition of two sets of results in terms of significance (Precision and accuracy) by (I) student's t-test, (ii) F-test.                                         |
| CO4 | Develop the water analysis: analysis of water samples for the following parameters.                                                                                            |
| CO5 | Explain the (i) BOD, (ii) COD, (iii) Dissolved oxygen, (iv) total phosphorous, (v) sulfur as SO <sub>2</sub> , (vi) total hardness and chloride, (vii) total dissolved solids. |
| CO6 | Illustrate the prepare a buffer solution of known ionic strength and to find its maximum buffer capacity.                                                                      |

| MCH458: Analytical Chemistry Project & evaluation |                              |
|---------------------------------------------------|------------------------------|
| <b>Teaching Scheme</b>                            | <b>Examination Scheme</b>    |
| Lectures: 3 hrs/Week                              | Class Test -12 Marks         |
|                                                   | Teachers Assessment - 6Marks |
|                                                   | Attendance – 12 Marks        |
| Credits: 2                                        | End Semester Exam – 70 marks |

Prerequisite: Concept of understand analytical chemistry research problems and solutions.

# **Course Objectives:**

- 1. To know about research and development in the field of chemical science.
- 2. To understand the problems and find the solutions.
- 3. To learn the advanced materials for industries requirements.

### **Course Outcomes:**

| CO1 | Describe the mechanism of chemical reactions for completed research project.       |
|-----|------------------------------------------------------------------------------------|
| CO2 | Understand the problem and solutions.                                              |
| CO3 | Explain the importance of the research project.                                    |
| CO4 | Develop the new model and mechanism for the chemical reaction of research project. |
| CO5 | Explain the importance materials for chemical science.                             |
| CO6 | Illustrate the experimental procedure of chemical processes.                       |